Biology, asked by nishu1298, 5 months ago

a body of mass 10 kg is moving with a velocity of 5 m/s attainsvof 35m/s in 5 second find the force applied on body to change its velocity



ans step by step​

Answers

Answered by ashvirajput000
5

Answer:

For a perfectly elastic collision, coefficient of restitution is e=1.

Let u and v be the velocities of 10 kg and 1 g masses after collision.

Thus, e=

rel. vel. of approach

rel. vel.of separation

=

5−0

v−u

=

5

v−u

But, as e=1, we have v−u=5.

Total momentum before collision is P=10×5=50 kg m/s

Total momentum after collision is P=10×(v−5)+0.001×v=10.001v−50

Thus, 10.001v−50=50⇒v=

10.001

100

≈10 m/s

Explanation:

please follow

Answered by Anonymous
33

Explanation:

GIVEN :-

  • Initial velocity , u = 5 m/s.
  • Final velocity , v = 35 m/s.

  • t = 5 seconds.

  • Mass of body , m = 10 kg.

TO FIND :-

  • The force applied , F

SOLUTION :-

 \\ \underline{ \bigstar \:  \textsf{Apply the 1st \: Equation of motion.}} \\  \\

 :  \implies \displaystyle \sf \:v = u + at \\  \\  \\

 :  \implies \displaystyle \sf \: 35 \: ms ^{ - 1}  = 5ms ^{ - 1}  + a \times 5 \\  \\  \\

 :  \implies \displaystyle \sf \:35 \: ms ^{ - 1}  - 5 \: ms ^{ - 1}   =  5s \times a \\  \\  \\

 :  \implies \displaystyle \sf \:30 \: ms ^{ - 1}  = 5s \times a \\  \\  \\

 :  \implies \displaystyle \sf \:a =  \dfrac{30 \: ms ^{ - 1} }{5} \\  \\  \\

 :  \implies  \underline{ \boxed{\displaystyle \sf \bold{ \:a = 6 \: ms ^{ - 2} }}} \\  \\

__________________…

 \\

\underline{ \bigstar \:  \textsf{Apply the \: formula \: of \: force .}} \\  \\

 :  \implies \displaystyle \sf \:Force = mass  \times Acceleration \\  \\  \\

 :  \implies \displaystyle \sf \:Force =10 \: kg \times 6 \: ms^{ - 2}  \\  \\  \\

 :  \implies \displaystyle \sf \:Force =60 \: kg.ms ^{ - 2}  \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \bold{ \:Force =60 \: N}}}

Similar questions