Physics, asked by bunty5877, 11 months ago

A Body of mass 10kg is let loose from
a tower of 100m height. Calculate the
kinetie energy of the body when it is
at the bottom of the tower​

Answers

Answered by Anonymous
11

 \bf \red{ \underline{ \underline{Given}}}

  • Mass = 10 kg

  • Height = 100 m

  • g = 10 m/s²

 \bf \red { \underline{ \underline{To  \: find \:  out }}}

Calculate the kinetie energy of the body when it is

at the bottom of the tower.

 \bf \red{ \underline{ \underline{Solution}}}

v {}^{2}  = u {}^{2}  + 2gh

 \rightarrow \: (0) {}^{2}  + 2 \times 10 \times 100

 \rightarrow \: 0 + 2000

v {}^{2}  = 2000 \: ms {}^{ - 1}

Now,

 \purple{Kinetic  \: energy  \: of \: body} =  \frac{1}{2} mv {}^{2}

 \implies \:  \frac{1} {2}  \times 10 \times  {2000} {}^{2}

 \implies \:  \frac{1}{2}  \times 10 \times 4000000

 \implies \:  \frac{1} {\cancel2}  \times 10 \times \cancel {4000000}

 \implies \: 1 \times 10 \times 2000000

= 20000000 J

Answered by muazkhalid1999
0

Answer:

The potential energy at the top of tower is 9800J which is converted into kinetic energy at the bottom of tower so the kinetic energy at bottom is 9800J

Explanation:

Similar questions