Physics, asked by aarohimishra1, 6 months ago

A body of mass 2 kg is accelerated from rest to a velocity. 20 ms^{–1} in 5 s. What is the work done and power consumed.​

Answers

Answered by MaIeficent
21

Explanation:

Given:-

  • Mass of the body (m) = 2kg

  • Initial velocity (u) = 0m/s [ Body starts from rest ]

  • Final velocity (v) = 20m/s

  • Time taken (t) = 5 sec

To Find:-

  • The work done by the body.

  • Power consumed by the body.

Solution:-

Using 1st equation of motion:-

\sf \implies v = u + at

\sf \implies 20 = 0 + a(5)

\sf \implies 5a = 20

\sf \implies a = \dfrac{20}{5}

\sf \implies a = 4m/s^2

\therefore \underline{\sf \: Acceleration = 4m/s^2 \: }

Now, let us find distance by

Using 3rd equation of motion:-

\sf \implies S = ut + \dfrac{1}{2}at^2

\sf \implies S = 0(5) + \dfrac{1}{2} \times 4 \times 5 \times 5

\sf \implies S =\dfrac{100}{2}

\sf \implies S = 50m

\therefore \underline{\sf \: Distance = 50m\: }

\sf Force = Mass \times Acceleration

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 2 \times 4

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 8N

\sf Work \: done = Force \times Displacement

\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 8 \times 50

\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 400J

\dashrightarrow \underline{\boxed{\therefore \sf Work \: done = 400J}}

\sf Power = \dfrac{Work \: done}{Time}

\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{400}{5}

\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 80W

\dashrightarrow \underline{\boxed{\sf \therefore Power \: consumed= 80W}}

Answered by Anonymous
147

\large{\textbf{\underline{Given:-}}}

✒Mass = 2kg

✒Final Velocity = 20m/s

✒Initial Velocity = 0m/s [as object starts from rest]

✒Time = 5sec

\large{\textbf{\underline{Find:-}}}

✑Work Done

✑Power Consumed

\large{\textbf{\underline{Solution:-}}}

\underline{\textsf{we know work done:-}}

 \huge{\underline{\boxed{\sf Change \: in \: Kinetic  \: Energy}}}

 \implies\sf  \dfrac{1}{2} m  \big\lgroup{v}^{2}  -  {u}^{2}\big\rgroup \\

 \gray{\sf where}  \footnotesize{\begin{cases}  \pink{\sf m = 2kg} \\  \green{\sf v =20m/s} \\  \purple{\sf u = 0m/s} \end{cases}}

\underline{\textsf{Substituting these values in the formula:-}}

 \dashrightarrow\sf  \dfrac{1}{2} m  \big\lgroup{v}^{2}  -  {u}^{2}\big\rgroup \\  \\

 \dashrightarrow\sf  \dfrac{1}{2}  \times 2 \times \big\lgroup{20}^{2}  -  {0}^{2}\big\rgroup \\  \\

 \dashrightarrow\sf  \dfrac{2}{2}\times \big\lgroup400 -  0\big\rgroup \\  \\

 \dashrightarrow\sf 400 J \\ \\

\small{\therefore \underline{\textsf{Work Done = 400J}}}

\underline{\textsf{Now, using:-}}

 \implies\sf  Power = \dfrac{Work\:Done}{Time} \\

 \pink{\sf where}  \footnotesize{\begin{cases}  \purple{\sf Work \: Done = 400J} \\  \blue{\sf Time = 5s} \end{cases}}

\underline{\textsf{Substituting these values in the formula:-}}

 \dashrightarrow\sf  Power = \dfrac{Work\:Done}{Time} \\  \\

 \dashrightarrow\sf  Power = \dfrac{400}{5} \\  \\

 \dashrightarrow\sf  Power = 80W \\   \\

\small{\therefore \underline{\textsf{Power = 80W}}}

Similar questions