Physics, asked by lamshi1739, 1 year ago

A body of mass 20kg moving with a speed of 10 ms^-1 on a horizontal smooth surface collides with a massles spring of spring constant 5N/m. If it stops after collision, distance of compression of spring will be ?

Answers

Answered by Anonymous
60

Solution

Compression in the spring is 20 m

Given

  • Mass of the moving object,M = 20 Kg

  • Spring Constant,K = 5 N/m

  • Velocity ,v = 10 m/s

To finD

Compression In Spring

When the object collides the Kinetic Energy of the object would be equal to Elastic Potential Energy of the string

 \longrightarrow \:  \sf \:  \dfrac{1}{2} m {v}^{2}  =  \dfrac{1}{2} k {x}^{2}  \\  \\  \longrightarrow \:  \sf \: m {v}^{2}  =  k {x}^{2}  \\  \\  \longrightarrow \:  \sf \: x =  \sqrt{ \dfrac{m {v}^{2} }{k} }  \\  \\  \longrightarrow \:  \sf \: x = v \times  \sqrt{ \dfrac{m}{k} }  \\  \\  \longrightarrow \:  \sf \: x = 10 \times  \sqrt{ \dfrac{20}{5} }  \\  \\  \longrightarrow \:  \sf \: x = 10 \times  \sqrt{4}  \\  \\ \huge{  \longrightarrow \:  \boxed{ \boxed{ \sf \: x =  - 20 \: m}}}

The negative sign indicates the compression of spring

Answered by Anonymous
35

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

Given :

  • Mass of body (m) = 20 kg
  • Velocity (v) = 10 m/s
  • Spring Constant (k) = 5 N/m

_____________________

To Find :

  • Distance of collision of spring

_____________________

Solution :

In case of collision Potential Energy is equal to the Elastic Potential energy.

We have the formulas :

\large{\boxed{\boxed{\sf{K.E \: = \: \dfrac{1}{2} mv^2}}}} \\ \\ \large{\boxed{\boxed{\sf{K.E_{spring} \: = \: \dfrac{1}{2} kx^2}}}}

Equate both the above equations

\implies {\sf{\dfrac{1}{2} mv^2 \: = \: \dfrac{1}{2} kx^2}} \\ \\ \implies {\sf{mv^2 \: = \: kx^2}} \\ \\ \implies {\sf{x^2 \: = \: \dfrac{mv^2}{k}}} \\ \\ \implies {\sf{x^2 \: = \: \dfrac{20 \: \times \: 10^2}{5}}} \\ \\ \implies {\sf{x^2 \: = \: \dfrac{2000}{5}}} \\ \\ \implies {\sf{x^2 \: = \: 400}} \\ \\ \implies{\sf{x \: = \: \sqrt{400}}} \\ \\ \implies {\sf{x \: = \: 20}}

As the distance is in compression.

So,

⇒ x (distance) = -20 m

Similar questions