Physics, asked by apoorvpalkar123, 11 months ago

A body of mass 3 kg is under a constant force which
causes a displacement s in metres in it, given by
the relation s = 5t2, where t is in seconds. Work
done by the force in 2 seconds is :-​

Attachments:

Answers

Answered by EkkVillain
65

\Huge\underline{\underline{\sf Answer}}

\large\underline{\underline{\sf Given:}}

  • Distance (s) = ⅓t²

  • Time (t) = 2 sec

  • Mass (m) = 3kg

\large\underline{\underline{\sf To\:Find:}}

  • Work done by force (W) = ?

\large\underline{\underline{\sf Solution:}}

\large{\boxed{\sf Work=F.ds }}

Force (F) = ?

So ,

According to Newton's second law :

\large{\boxed{\sf F=ma }}

a = ?

\sf{→s =\frac{1}{3}t^2}

\sf{→ v =2×\frac{1}{3}×t}

\sf{→ a = 2×\frac{1}{3}}

{\sf →a=\frac{2}{3}m/s^2 }

On putting value of a

\large{\sf F = 3×\frac{2}{3} }

\large{\sf F=2N }

On Putting value of Force :-

\large{\boxed{\sf W=F.ds}}

\large{\sf →W=2×\frac{1}{3}×t^2 }

\large{\sf →W=2×\frac{4}{3}}

\large{\sf →W=\frac{8}{3}}

Hence ,

\red{\boxed{\sf Work\:done(W)=\frac{8}{3}J}}

Answered by Anonymous
40

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

From the Question,

  • Mass of the particle,m = 3 Kg

Displacement of the particle is defined as:

  \large{\sf{s =  \frac{1}{3} t {}^{2}}} \\

Differentiating s w.r.t to t,we get velocity of the particle:

  \large{\sf{v =  \frac{ds}{dt} }} \\  \\  \rightarrow \ \sf{v =  \frac{d( \frac{1}{3}t {}^{2} ) }{dt} } \\  \\  \rightarrow \:   \huge{ \rm{v \:  = \frac{2}{3}t \: ms {}^{ - 1} }}

Differentiating v w.r.t to t,we get:

 \large{ \sf{a =  \frac{dv}{dt}}}  \\  \\  \rightarrow \ \sf{a = \frac{d(\frac{2}{3}t)}{dt}}  \\ \\\huge{\rightarrow \:    \boxed{\rm{a =  \: {\frac{2}{3}} ms^{ - 2} }}}

We Know that,

F = ma

→ F = ⅔(3)

→F = 2 N

When t = 2, displacement would be:

 \sf{s =  \frac{1}{2} (2) {}^{2}} \\  \\   \huge{\implies \:  \sf{s =  \frac{4}{3}m}}

\therefore

\Huge{\boxed{\boxed{\sf{W = F.s}}}}

Putting the values,we get:

\sf{W = 2 \times \frac{4}{3} } \\ \\ \implies \ \huge{\sf{W = \frac{8}{3} J}}

Thus,the work done by the force is 8/3 Joules

The correct option is____________(c)

Similar questions