A body of mass 3kg under a force , which causes a displacement in it is given by s=t^3/3 in m. Find the work done by the force in first 2 seconds
Answers
Answered by
0
)
$s=\large\frac{1}{3}$$t^2=>\large\frac{ds}{dt}=\frac{2}{3}$$t$
acceleration $=a=\large\frac{d^2s}{dt^2}$
$\qquad=\large\frac{2}{3}$$m/s^2$
Force $=m \times a$
$ \qquad=3 \times \large\frac{2}{3}$$=2N$
$ds=\large\frac{2}{3}$$tdt$
Work done $= \int F ds$
$W=F \int \limits_0^t \large\frac{2}{3} $$t dt$
$\quad=2 \times \large\frac{2}{3} $$ \times \large \frac{t^2}{2} \bigg|_0^2$
$\quad=\large\frac{4}{3} \times \frac{4}{2}$
$\quad=\large\frac{8}{3}$$\;J$
Hence a is the correct answer.
$s=\large\frac{1}{3}$$t^2=>\large\frac{ds}{dt}=\frac{2}{3}$$t$
acceleration $=a=\large\frac{d^2s}{dt^2}$
$\qquad=\large\frac{2}{3}$$m/s^2$
Force $=m \times a$
$ \qquad=3 \times \large\frac{2}{3}$$=2N$
$ds=\large\frac{2}{3}$$tdt$
Work done $= \int F ds$
$W=F \int \limits_0^t \large\frac{2}{3} $$t dt$
$\quad=2 \times \large\frac{2}{3} $$ \times \large \frac{t^2}{2} \bigg|_0^2$
$\quad=\large\frac{4}{3} \times \frac{4}{2}$
$\quad=\large\frac{8}{3}$$\;J$
Hence a is the correct answer.
Similar questions