Physics, asked by princyy65, 9 months ago

A body of mass 500 g is at rest on a frictionless surface. what is the distance travelled by it in 10s when acted upon by a force of 10^-2 N? ​

Answers

Answered by Anonymous
269

\bf\pink{Answer}

\sf\red{Given - }

\bf m = 500g = 0.5 kg

\bf t = 10 sec

\bf F = 10^{-2}

\bf u = 0

where

\longrightarrowm is mass of body.

\longrightarrowu is initial velocity.

\longrightarrowt is time taken.

\longrightarrowF is force applied.

━━━━━━━━━━━━━

\sf\red{To\: find -}

Distance travelled \longrightarrow s

━━━━━━━━━━━━━

\sf\red{Formula \: used -}

\boxed{\bf \pink {F = ma}}

\boxed{\bf \pink {s = ut + 1/2 at^2}}

where

\longrightarrowm is mass of body.

\longrightarrowt is time taken.

\longrightarrowF is force applied.

\longrightarrowu is initial velocity.

\longrightarrowa is acceleration.

━━━━━━━━━━━━━

\sf\red{Solution - }

\longrightarrowF = 10^-2

\longrightarrow m = 500g = 0.5 kg

Using the formula -

\bf \pink {F = ma}

\implies\bf \green {10 ^{ - 2} =  0.5 \times a }

\implies\bf \green {a = 0.01 / 0.5 }

\implies\bf \green {a = 0.02 m/s^2 }

━━━━━━━━━━━━━

\longrightarrow\bf t = 10 sec

\longrightarrow\bf a = 0.02 m/s^2

\longrightarrow\bf u = 0 m/s

By using the second equation of motion -

\bf \pink {s = ut + 1/2 at^2}

\implies\bf \green {s = \frac{1}{2}  \times 0.02 \times 10^{2}  }

\implies\bf \blue {s = 1m}

Distance travelled by body in 10 seconds is 1 m

━━━━━━━━━━━━━

\bf\pink{Thanks}


Anonymous: Amazing :)
Anonymous: Good work!
Anonymous: Nice:)
TheMoonlìghtPhoenix: Great!
Answered by Anonymous
174

 \underline {\underline{{\red{ \sf Given }}}}

  • Mass (m) ➠ 500g ➠ 0.5kg
  • Time (t) ➠ 10 s
  • Force Applied (N) ➠ 10⁻²
  • Initial Speed (u) ➠ 0

 \underline {\underline{{ \red{\sf To \: Find }}}}

  • Distance Travelled (s)

Firstly,we will calculate a Acceleration and finally we will calculate the distance travelled

 \huge{ \underline {\underline{{ \green{\sf Calculating \: Acceleration }}}}}

Formula Used :-  \underline{\underline{\boxed{   \gray{\sf Force (F) = Mass(m) \times Acceleration (a) }}}}

Substituting Values

☞ 10⁻² = 0.5 × a

☞ 10⁻² = 0.5a

☞ 0.5a = 0.01

☞ a = ⁰∙¹⁄₀.₀₅

☞ a = 0.02

{\pink{ \underbrace{\boxed{\underline{\underline{\blue{ \tt Thus, we \: got \: acceleration \: 0.02 \: m/s^{2}}}}}}}}

Now,

 \huge{ \underline {\underline{{ \green{\sf Calculating \: Distance \: Travelled }}}}}

Formula Used :-  \underline{\underline{\boxed{   \gray {\sf S = ut + \dfrac{1}{2} at^{2}}}}}

Substituting Values

☞ s = 0 × 10 + ½ × 0.02 × (10)²

☞ s = 0 + ½ × 0.02 × 100

☞ s = ½ × 2

☞ s = ²⁄₂

☞ s = 1

{\red{ \underbrace{\boxed{\underline{\underline{\blue{ \tt Therefore, Distance \: Travelled \: is \: 1 \: m}}}}}}}


Anonymous: Great :p
Anonymous: Good work!
Anonymous: Great Explanation :)
Anonymous: Awesome :)
TheMoonlìghtPhoenix: Great!
Similar questions