Physics, asked by darshanhk69, 10 months ago

A body of mass 500 gm is attached to a spring and the system is driven by an external periodic force of amplitude 15N and frequency 0.796Hz. the spring extends by a length of 88mm under the given load. Calculate the amplitude of oscillation if the resistance coefficient of the medium is 5.05 kg/s​

Answers

Answered by knjroopa
3

Explanation:

Given A body of mass 500 gm is attached to a spring and the system is driven by an external periodic force of amplitude 15 N and frequency 0.796 Hz. the spring extends by a length of 88 mm under the given load. Calculate the amplitude of oscillation if the resistance coefficient of the medium is 5.05 kg/s

  • Mass of the body m = 500 gm = 0.5 kg
  • External periodic force F = 15 N
  • Frequency f = 0.796 hz
  • Length extended l = 88 m = 88 x 10^-3 m
  • Resistance coefficient b = 5.05 kg / s
  • Amplitude of oscillation A = ?
  • Now we have A = F/m / √(ω^2 – p^2)^2 + (γp)^2
  • We have γ = b/m
  •                  = 5.05 / 0.5
  •                = 10.1 s^-1
  • Angular frequency of applied force p = 2πf
  •                                                                = 2 x 3.14 x 0.796
  •                                                                  = 4.9
  •                                                                 = 5 rad / s
  • Force constant k = F / l  
  •                             = mg / l
  •                            = 0.5 x 9.8 / 88 x 10^-3
  •                           = 55.68 N/m
  • Frequency ω = √k / m
  •                       = √55.68 / 0.5
  •                      = √111.36
  •                       = 10.55 rad / s              
  • Substituting all the above values in the equation we get
  •                               A = F/m / √(ω^2 – p^2)^2 + (γp)^2
  •                                   = 15 / 0.5 / √[(10.55)^2 – 5^2]^2 + (10.1 x 5)^2
  •                                 = 30 / √(111.3025 – 25)^2 + (50.5)^2
  •                                  = 30 / √7448.12 + 2550.25)
  •                                = 30 / 99.991
  •                             A = 0.3 m
  • Therefore the amplitude of oscillation A = 0.3 m

Reference link will be

https://brainly.in/question/3118996

Answered by CarliReifsteck
1

Given that,

Mass of body m= 500 gm

Force F= 15 N

Frequency f= 0.796 Hz

Length l= 88 mm

Resistance coefficient b= 5.05 kg/s

We need to calculate the angular frequency

Using formula of angular frequency of applied force

p=2\pi f

Put the value into the formula

p=2\pi\times0.796

p=5.00\ rad/s

We need to calculate the force constant

Using formula of force constant

k=\dfrac{F}{l}

Put the value into formula

k=\dfrac{0.5*9.8}{88\times10^{-3}}

k=55.68\ N/m

We need to calculate the frequency

Using formula of frequency

\omega=\sqrt{\dfrac{k}{m}}

Put the value into the formula

\omega=\sqrt{\dfrac{55.68}{0.5}}

\omega=10.55\ rad/s

We need to calculate the value of γ

Using formula of γ

\gamma=\dfrac{b}{m}

Put the value into the formula

\gamma=\dfrac{5.05}{0.5}

\gamma=10.1\ s^{-1}

We need to calculate the amplitude of oscillation

Using formula of amplitude

A=\dfrac{\dfrac{F}{m}}{\sqrt{(\omega^2-p^2)^2+(\gamma p))^2}}

Put the value into the formula

A=\dfrac{\dfrac{15}{0.5}}{\sqrt{(10.55^2-5^2)^2+(10.1\times5)^2}}

A=0.3\ m

Hence, The amplitude of oscillation is 0.3 m

Similar questions