Physics, asked by dakshisj5709, 10 months ago

A body of weight 200N moves in a horizontal circular path of radius 10m with speed of 10ms^-1. What is the centripetal force acting on the body? (g=10ms^-2).

Answers

Answered by ShivamKashyap08
12

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Weight of body (W) = 200N.
  • Radius of circular path (r) = 10 m.
  • Speed of the body (v) = 10 m/s.
  • Acceleration due to gravity (g) = 10 m/s².

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

Firstly Finding The Mass of the body.

Therefore,

\large{\boxed{\tt W = mg}}

Substituting the values,

\large{\tt \implies 200 = m \times 10}

\large{\tt \implies m = \dfrac{200}{10}}

\large{\tt \implies m = \dfrac{20\cancel{0}}{\cancel{10}}}

It becomes,

\large{\boxed{\tt m = 20 \: Kg}}

So, the mass of the body is 20Kg.

\rule{300}{1.5}

\rule{300}{1.5}

Now, From Expression Of Centripetal Force.

\large{\boxed{\tt F = \dfrac{mv^2}{r}}}

Substituting the values,

\large{\tt \implies F = \dfrac{20 \times (10)^2}{10}}

\large{\tt \implies F = \dfrac{20 \times 100}{10}}

\large{\tt \implies F = \dfrac{2\cancel{0} \times 100}{\cancel{10}}}

\large{\tt  \implies F = 2 \times 100}

\huge{\boxed{\boxed{\tt F = 200 \: N}}}

So, The Centripetal Force acting on the body is 200N.

\rule{300}{1.5}

\rule{300}{1.5}

Some Important formulas:-

  • Tangential acceleration = {\tt \dfrac{dv}{dt}}

  • Centripetal acceleration = {\tt \dfrac{v^2}{r}}

  • Relation b/w Angular velocity and Linear velocity v = rω.

\rule{300}{1.5}


αmαn4чσu: great answer bhaiya
ShivamKashyap08: Thank uh !!! :)
Answered by Anonymous
11

\huge{\star}{\underline{\boxed{\red{\sf{Answer :}}}}}{\star}

Given :-

Weight of body (W) = 200 N

Radius of path = 10 m

Speed (v) = 10 m/s

Take g as 10 m/s²

=======================================

To Find :-

Centripetal force acting on body

=========================================

Solution :-

As, we know that

\Huge{\boxed{\boxed{\green{\sf{Mass \: = \: \frac{Weight}{g}}}}}}

____________[Put Values]

\Large \rightarrow {\sf{Mass \: = \: \frac{20 \cancel{0}}{\cancel{10}}}}

\LARGE \implies {\boxed{\boxed{\sf{Mass \: = \: 20 \: kg}}}}

\rule{200}{3}

For Calculating value of Centripital force we have formula :-

\Huge{\boxed{\boxed{\orange{\sf{F_{c} \: = \: \frac{mv^2}{r}}}}}}

Where,

Fc is centripital force

r is radius

m is mass

v is velocity

____________[Put Values]

\Large \rightarrow {\sf{F_{c} \: = \: \frac{20 \: \times \: (10)^2}{10}}}

\Large \rightarrow {\sf{F_{c} \: = \: \frac{20 \: \times \: 10 \cancel{0}}{\cancel{10}}}}

\Large \rightarrow {\sf{F_{c} \: = \: 20 \: \times \: 10}}

\Huge \implies {\boxed{\boxed{\sf{F_{c} \: = \: 200 \: N}}}}

∴ Centripital force is 200 N


αmαn4чσu: nice answer crocodile xD
Similar questions