Physics, asked by waynomalime, 5 months ago

a body project up eard with speed 10m/s then what will be maximum heingt​

Answers

Answered by vikashbeswal
0

physics is not my subject

sorry to say

Answered by Anonymous
6

 \large \underline \bold{Given}

\: \: \: \sf{speed \: of \: body \: (u) = 10 \: m/s}

 \large \underline \bold{To \: Find}:-

\: \: \: \: \sf{maximum \: height \: (H) = ?}

 \large \underline \bold{Usable \: Formula}:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \large\boxed{\sf\red{H = \dfrac{u^{2}Sin 2O}{2g}}}

\sf{here \: ,}

\: \: \: \: \: \: \sf{H = height}

\: \: \: \: \: \: \sf{u = speed}

\: \: \: \: \: \: \sf{O = angle}

\: \: \: \: \: \: \sf{g = 10 \: m/s^{2}}

 \large \underline \bold{Solution}:-

\sf{On \: maximum \: height \: - \: O = 45}°

\sf{So \: ,}

\: \: \: \: \: \: \: \: \sf{H\displaystyle{max} = \dfrac{u^{2} Sin 90}{2g}}

\: \: \: \: \: \: \: \: \sf{H\displaystyle{max} =\dfrac{(10)^{2} (1)^{2}}{2(10)}}

\: \: \: \: \: \: \: \: \sf{H \displaystyle{max} = \dfrac{100\times 1}{20}}

\: \: \: \: \: \: \: \: \sf{H \displaystyle{max} = \dfrac{100}{20}}

\: \: \: \: \: \: \: \: \sf{H \displaystyle{max} = \dfrac{50}{10}}

\: \: \: \: \: \: \: \: \sf{H \displaystyle{max} = 5 \: m}

Similar questions