Physics, asked by mamtateen6260, 9 months ago

A body projected vertically upward with a velocity u reaches a maximum height h . The velocity of projection to reach double the maximum height i.e., 2h is

Answers

Answered by BrainlyConqueror0901
13

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Initial\:velocity=\sqrt{2}u\:m/s}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Maximum \: height = 2h \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Initial \: velocity =?

• According to given question :

 \tt \circ \: Final \: velocity = 0 \: m/s \\  \\  \bold{as \: we \: know \: that}  \\ \tt:  \implies   {v}^{2}  =  {u}^{2}  + 2as \\   \\ \tt:  \implies  {0}^{2}  =  {u}^{2}  + 2 \times a \times h \\  \\ \tt:  \implies  -  {u}^{2}  = 2h \times a \\  \\ \tt:  \implies a =   - \frac{ {u}^{2} }{2h}\:m/s^{2}

 \tt \circ \: Acceleration =   - \frac{{u}^{2} }{2h} \:m/s^{2} \\   \\  \bold{as \: we \: know \: that} \\   \tt:  \implies  {v}^{2}  =  { u_{1}}^{2}  + 2as \\  \\ \tt:  \implies  {0}^{2}  =  { u_{1}}^{2}  + 2 \times ( -  \frac{ {u}^{2} }{2h} ) \times 2h \\  \\ \tt:  \implies   - { u_{1}}^{2}  =  - 2 {u}^{2} \\  \\ \tt:  \implies { u_{1}}^{2}  =2 {u}^{2}  \\  \\  \green{\tt:  \implies { u_{1}} = \sqrt{2}u \: m/s } \\  \\   \green{\tt \therefore initial \: velocity \: to \: reach \:  \: 2h  \: \: height \: is \:   \: \sqrt{2}u  \: \:  m/s}

Answered by Anonymous
9

Hope this helps uh....!

Attachments:
Similar questions