Math, asked by 02sonalilegend, 1 month ago

a body projected with a velocity 30m/s at an angle of 30° with the vertical.find the maximum height attained by body​

Answers

Answered by Anonymous
366

Topic :- Motion in Plane

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\maltese \: \underline{\textsf{\textbf{AnsWer :}}}\:\maltese

✏ A body is projected with a velocity (u) 30m/s at an angle of 30° with the vertical.

✏ We need to find the maximum height attained by body.

✏ The maximum height attained by body is given by ;

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{(u_y)^2}{2g}=\dfrac{u^2\sin^2(\theta)}{2g} \\

But here the angle 'θ' is in horizontal ;

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{u^2\sin^2(\alpha)}{2g} \\

Here, the angle 'α' is in vertical.

Here, the angle made by the α is 30°

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{u^2\sin^2( {30}^{ \circ} )}{2g} \\

Angle 'θ' can also be written as :

\qquad \qquad \dag \:  \underline{ \footnotesize \sf \theta= 90 - \alpha}

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{u^2\sin^2( {90}^{ \circ}  -  \alpha)}{2g} \\

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{u^2\sin^2( {90}^{ \circ}  -{30}^{ \circ} )}{2g} \\

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{u^2\cos^2({30}^{ \circ} )}{2g} \\

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{(30)^2\times\big(\frac{ \sqrt{3} }{2} \big)^{2}  }{2 \times 10} \\

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{900\times\frac{3 }{4}   }{2 0} \\

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\dfrac{90\times\frac{3 }{4}   }{2} \\

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=45\times\frac{3 }{4}   \\

\footnotesize\longrightarrow\:\:\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=\frac{135 }{4}   \\

\footnotesize\longrightarrow\:\:\underline{\underline{\sf Maximum \:Height_{(attained  \: by \:  the \:  body)}=  33.75 \:m}} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Attachments:

mddilshad11ab: Great¶
Anonymous: Thank you.
Answered by Anonymous
146

\huge \blue{\Large{\boxed{\tt{ \red{Answer:- }}}}}

\small\sf\orange{Given,}

\red\rightarrow u = 30m/s

\rm\purple{Angle\:of\:projection,}

\red\rightarrow \small\rm{\theta = 90° - 30° = 60°}

\rm\purple{Maximum\: height,}

\red\rightarrow \rm{\frac{ {u}^{2} \sin  \theta}{2g}}

\red\rightarrow \rm{\frac{30 ^{2} \sin ^{2}60°}{2}}

\red\rightarrow \rm{\frac{900}{20}  \times  \frac{3}{4}}

\boxed{\tt\blue{Maximum\:height}\pink\implies\frac{135}{4}m=33.75m}

Hope it helps :)

Similar questions