Physics, asked by divyadinesh731, 11 months ago

A body slides down a smooth 30 degree incline 9.8m long. The time of descent is:​

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time\:taken=2\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Angle \: of \: elevation = 30 \degree \\  \\  \tt:  \implies Length(s) = 9.8 \: m \:  \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Time \: of \: descent(t) = ?

• According to given question :

 \tt \circ \: Downward \: acceleration = g \: sin \theta \: m/{s}^{2}  \\  \\  \tt \circ \:Length  = 9.8 \: m \\  \\  \tt \circ \: Value \: of \: g = 9.8 \: m/{s}^{2} \\  \\  \tt \circ \: Initial \: velocity = 0 \: m/s   \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2} a {t}^{2}  \\  \\ \tt:  \implies 9.8 = 0 \times t  +\frac{1}{2} gsin \:   \theta \times t^{2} \\  \\ \tt:  \implies 9.8 = 9.8 \times \frac{1}{2} sin \: 30 \degree \times  t^{2} \\  \\ \tt:  \implies  \frac{9.8}{9.8}  =  \frac{1}{4}  \times t^{2} \\  \\ \tt:  \implies 4 =   t^{2} \\  \\  \green{\tt:  \implies t = 2 \: sec}

Answered by Saby123
2

 \tt{\huge {\pink {Hello!!! }}}

Question :

A body slides down a smooth 30 degree incline 9.8m long. The time of descent is :

Solution :

 \tt{\orange {Step-By-Step-Explaination \: :- }}

 \tt{ \purple{ \leadsto{a \:  = g \sin(  \phi) -  \dfrac{ \nu \: n \:  \cos( \phi) }{ma}  }}}

Solving...

 \tt{ \red{ \leadsto{a \:  = 3.62 \: m. {s}^{ - 2} }}}

 \tt{ \blue{ \mapsto{t \:  =  \:  {( \dfrac{2s}{a}) }^{ \frac{1}{2} } }}}

Solving...

 \tt{ \green { \leadsto{t \:  = 2 \: sec.}}}

Attachments:
Similar questions