Physics, asked by makulu, 1 year ago

a body start from rest. what is the ratio of distance travelled by the body during fourth and third second

Answers

Answered by subuhisohail78
0

Hope it will help you ❤️❤️❤️❤️

please mark as brilliant ❤️

Attachments:
Answered by rohit301486
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{s_{4}:s_{3}=7:5}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline \bold{Given :}}

\tt: \implies Initial \: velocity = 0 \: m/s

\red{\underline \bold{To \: Find :}}

\tt: \implies \frac{ s_{4} }{ s_{3} } =?

  • Given Question

\bold{As \: we \: know \: that}

\tt: \implies s_{n} = u + \frac{a}{2} (2n - 1)

\tt: \implies s_{4} = 0 + \frac{a}{2} (2 \times 4 - 1)

\tt: \implies s_{4} = \frac{a}{2} (8 - 1)

 \tt: \implies s_{4} = \frac{7a}{2} - - - - - (1)

\bold{As \: we \: know \: that}

 \tt: \implies s_{n} = u + \frac{a}{2} (2n - 1)

\tt: \implies s_{3} = 0 + \frac{a}{2} (2 \times 3 - 1)

\tt: \implies s_{3} = \frac{a}{2} (6 - 1)

\tt: \implies s_{3} = \frac{5a}{2} - - - - - (2)

\bold{For \: Ratio : }

\tt: \implies \frac{ s_{4} }{ s_{3} } = \frac{ \frac{7a}{2} }{ \frac{5a}{2} }

\tt: \implies \frac{ s_{4} }{ s_{3} } = \frac{7a}{2} \times \frac{2}{5a}

 \tt: \implies \frac{ s_{4} }{ s_{3} } = \frac{7}{5}

\green{\tt: \implies { s_{4} } : { s_{3} } = 7 : 5}

Similar questions