Science, asked by sosorry90, 9 days ago

a body starting from the rest moves with a uniform acceleration of 0.02 m/s² for 5 minutes. calculate the speed acquired and the distance travelled in this time.​

Answers

Answered by SparklingBoy
110

 \large \dag Question :-

A body starting from the rest moves with a uniform acceleration of 0.02 m/s² for 5 minutes. Calculate the speed acquired and the distance travelled in this time.

 \large \dag Answer :-

\pink{\begin{cases} \bf Speed\:Acquired = 6 \:m/s \\  \\  \bf Distance\:Travelled = 900 \: m\end{cases}}

 \large \dag Step by step Explanation :-

 Converting Time in Seconds :-

We Have,

\text{Time= 5 mins} \\

= \rm( 5 \times 60)second \\

\red{:\longmapsto \text{Time = 300 \:s}}

Now Here we have :

  • Initial Velocity = u = 0 m/s

  • Acceleration = a = - 0.02 m/s²

  • Time = t = 300 s

1 》 Calculating Speed Acquired :-)

Let Speed Acquired by Body be = v m/s

 We Have 1st Equation of Motion as :

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{v = u + at}}}

⏩ Applying 1st Equation of Motion ;

:\longmapsto \rm v = 0 + 0.02 \times 300 \\

:\longmapsto \rm v = 0.02 \times 300 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf v = 6 \: m/s} }}}

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{\text Speed \:  \text Acquired = 6\: m/s }}}}}

2 》Calculating Distance Traveled :-)

 We Have 2nd Equation of Motion as :

\large \bf \red \bigstar \: \: \orange{ \underbrace{ \underline{s=ut+\dfrac{1}{2}at^2}}} \\

⏩ Applying 2nd Equation of Motion :

:\longmapsto \rm s = 0 \times 300 +  \frac{1}{2}  \times 0.02 \times  {300}^{2}  \\

:\longmapsto \rm 0 +  \frac{1}{2}  \times 0.02 \times  {300}^{2}  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf s = 900 \: m} }}}

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{Distance \:  \text Traveled  = 900 \: m }}}}}

Answered by FiercePrince
38

\frak{Given}\:\begin{cases}\:\quad\sf Initial \:Velocity \:of\:a\:body\:,\:u\:=\:\pmb{\frak{ 0\:m/s\:}}\:\\\:\quad\sf Acceleration \:of\:a\:body\:,\:a\:=\:\frak{\pmb{ 0.02\:m/s^2\:}}\:\\\:\quad\sf Time\:Taken \:by\:a\:body\:,\:t\:=\:\pmb{\frak{ 5\:min\:}}\:\:\end{cases}\:\\\\

Need To Find : (I) Speed acquired and , (II) Distance Travelled by a body ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

We've the , Initial Velocity (u) , Acceleration (a) and Time Taken by a body , and we'll find Speed Acquired ( or Final Velocity , v ) of the body using First Equation of Motion and that is : \:\underline {\pmb{\sf v \:=\: u + at\:}}\\

 :\implies \sf \:v\:=\:u \:+\: at\:\\\\\\ :\implies \sf \:v\:=\:0 \:+\: (\:0.02\:\times \:5\:min\:)\:\\\\\\ :\implies \sf \:v\:=\:0 \:+\: (\:0.02\:\times \:5\times 60\:)\:\qquad \Bigg\lgroup \:1 \:min \:=\:60\:sec\:\Bigg\rgroup \\\\\\  :\implies \sf \:v\:=\:0 \:+\: (\:0.02\:\times \:5\times 60 \:)\:\\\\\\ :\implies \sf \:v\:=\:0 \:+\: (\:0.02\:\times \:300 \:)\:\\\\\\:\implies \sf \:v\:=\:0.02\:\times \:300 \:\\\\\\ :\implies \pmb {\underline {\boxed {\purple {\:\frak{ \:v\:\:=\:6\:m/s\:}}}}}\:\bigstar \: \\\\\\

\therefore \:\underline {\sf \: Hence,\:Speed\:acquired\:by\:body\:is\:\pmb{\sf 6\:m/s\:}\:.}\:\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\\\bigstar \:\underline {\sf According \:To\:The\:given\:Question \:\::\:}\:\\

Now , We'll find the Distance Travelled (s) using the Third Equation of Motion and that is : \:\underline {\pmb{\sf s \:=\: ut\:+\:\dfrac{1}{2}\:at^2\:}}\\

\\ \dashrightarrow \sf s \:=\: ut\:+\:\dfrac{1}{2}\:at^2\:\\\\\\ \dashrightarrow \sf s \:=\: (\:0\:\times 5 \:min\:)\:+\:\dfrac{1}{2}\:\times\: 0.02\:(\:  5 \:min\:)^2\:\\\\\\ \dashrightarrow \sf s \:=\: 0\:+\:\dfrac{1}{2}\:\times 0.02\: (\: 5 \:min\:)^2\:\\\\\\ \dashrightarrow \sf s \:=\:\dfrac{1}{2}\:\times 0.02\: (\: 5 \times 60\:)^2\:\:\qquad \Bigg\lgroup \:1 \:min \:=\:60\:sec\:\Bigg\rgroup\\\\\\ \dashrightarrow \sf s \:=\:\dfrac{1}{2}\:\times\: 0.02\: (\:300\:)^2\:\\\\\\  \dashrightarrow \sf s \:=\: 0.01\times 90000\:\\\\\\  \dashrightarrow \pmb {\underline {\boxed {\purple {\:\frak{ \:s\:\:=\:900\:m\:}}}}}\:\bigstar \: \\\\\\

\therefore \:\underline {\sf \: Hence,\:Distance \:Travelled \:by\:body\:is\:\pmb{\sf 900\:m\:}\:.}\:\\\\

Similar questions