a body starting with a velocity of 10m/s is accelerated uniformly from 60s . if the velocity acquired in this interval is 250m/s . find the acceleration and also the distance traveled
Answers
Answer:
Explanation:
To rejoice learning:
STAY BRAINLY•••
Answer:
Acceleration=4ms
−2
Distancetravelledbybody=7800m
Explanation:
\begin{gathered}Given: < /p > < p > \\ Initial \: velocity \: (u)= 10 \: ms {}^{ - 1} , \\ Final \: velocity \: (v)= 250 \: ms {}^{ - 1} , \\ Time \: (t) = 60 \: s \\ \\ Acceleration \: (a) = \frac{v - u}{t} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{250 - 10}{60} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{240}{60} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > 4 \: ms {}^{ - 2} \\ \\ Distance \: travelled \: \: \: S=ut + \frac{1}{2} at {}^{2} \\ = 10 \times 60 + \frac{1}{2} \times 4 \times 3600 \\ = 600 + 2 \times 3600 \\ = 600 + 7200 \\ = > 7800 \: m\end{gathered}
Given:</p><p>
Initialvelocity(u)=10ms
−1
,
Finalvelocity(v)=250ms
−1
,
Time(t)=60s
Acceleration(a)=
t
v−u
=
60
250−10
=
60
240
=>4ms
−2
DistancetravelledS=ut+
2
1
at
2
=10×60+
2
1
×4×3600
=600+2×3600
=600+7200
=>7800m