Physics, asked by ryashasveeryr, 2 months ago

A body starts from rest and acquires a velocity of 18 km/h in 10 s. The acceleration of the body is​

Answers

Answered by sethrollins13
132

Given :

  • A body starts from rest and acquires a velocity of 18 km/h in 10 s.

To Find :

  • Acceleration of the body .

Solution :

\longmapsto\tt{Initial\:Velocity=0\:m/s}

\longmapsto\tt{Final\:Velocity=18\:km/hr=5\:m/s}

\longmapsto\tt{Time\:Taken=10\:sec}

Using Formula :

\longmapsto\tt\boxed{Acceleration=\dfrac{v-u}{t}}

Putting Values :

\longmapsto\tt{\dfrac{5-0}{10}}

\longmapsto\tt{\cancel\dfrac{5}{10}}

\longmapsto\tt{\cancel\dfrac{1}{2}}

\longmapsto\tt\bf{0.5\:{m/s}^{2}}

_____________________

Acceleration :

  • It is defined as the rate of change of velocity of the object .

Formula of Acceleration is :-

\longrightarrow\tt{Acceleration=\dfrac{v-u}{t}}

Here :

  • v = Final Velocity
  • u = Initial Velocity
  • t = time taken

_____________________

Answered by Anonymous
79

Answer:

Given :-

  • A body starts from rest and acquires a velocity of 18 km/h in 10 seconds.

To Find :-

  • What is the acceleration of the body.

Formula Used :-

\clubsuit First Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{v =\: u + at}}}

where,

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • t = Time

Solution :-

First, we have to convert final velocity km/h into m/s :

\implies \sf Final\: Velocity =\: 18\: km/h

\implies \sf Final\: Velocity =\: 18 \times \dfrac{5}{18}\: m/s\: \: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup\\

\implies \sf Final\: Velocity =\: {\cancel{18}} \times \dfrac{5}{\cancel{18}}\: m/s

\implies \sf\bold{\purple{Final\: Velocity =\: 5\: m/s}}

Given :

\bigstar\: \: \rm{\bold{Final\: Velocity (v) =\: 5\: m/s}}

\bigstar\: \: \rm{\bold{Initial\: Velocity (u) =\: 0\: m/s}}

\bigstar\: \: \rm{\bold{Time (t) =\: 10\: seconds}}

According to the question by using the formula we get,

\longrightarrow \sf 5 =\: 0 + a(10)

\longrightarrow \sf 5 =\: 0 + 10a

\longrightarrow \sf 5 - 0 =\: 10a

\longrightarrow \sf 5 =\: 10a

\longrightarrow \sf \dfrac{5}{10} =\: a

\longrightarrow \sf 0.5 =\: a

\longrightarrow \sf\bold{\red{a =\: 0.5\: m/s^2}}

\therefore The acceleration of the body is 0.5 m/.

Similar questions