Physics, asked by meerag280, 1 month ago

A body starts from rest and moves with an acceleration of 10 m/sq. s and attains a velocity of 50 m/s. Calculate the distance travelled by the body during this time.​

Answers

Answered by Anonymous
140

Provided that:

  • Initial velocity = 0 mps
  • Acceleration = 10 mps sq.
  • Final velocity = 50 mps

To calculate:

  • Distance travelled

Solution:

  • Distance travelled = 125 m

Using concept:

  • Third equation of motion

Using formula:

  • {\small{\underline{\boxed{\pmb{\sf{v^2 \: - u^2 \: = 2as}}}}}}

Where, a denotes acceleration, u denotes initial velocity, v denotes final velocity and s denotes displacement or distance or height.

Required solution:

{\sf{:\implies v^2 \: - u^2 \: = 2as}}

{\sf{:\implies (50)^{2} - (0)^{2} = 2(10)(s)}}

{\sf{:\implies 2500 - 0 = 2(10)(s)}}

{\sf{:\implies 2500 = 2(10)(s)}}

{\sf{:\implies 2500 = 20s}}

{\sf{:\implies \dfrac{2500}{20} = s}}

{\sf{:\implies \dfrac{250}{2} = s}}

{\sf{:\implies 125 = s}}

{\sf{:\implies s \: = 125 \: m}}

{\sf{:\implies Distance \: = 125 \: m}}

Know more:

\begin{gathered}\boxed{\begin{array}{c}\\ {\pmb{\sf{Three \: equation \: of \: motion}}} \\ \\ \sf \star \: v \: = u \: + at \\ \\ \sf \star \: s \: = ut + \: \dfrac{1}{2} \: at^2 \\ \\ \sf \star \: v^2 - u^2 \: = 2as\end{array}}\end{gathered}

Answered by NewGeneEinstein
76
  • initial velocity=u=0m/s
  • Final velocity=v=50m/s
  • Acceleration=10m/s^2
  • Time=t

Using Acceleration formula

\\ \sf\longmapsto a=\dfrac{v-u}{t}

\\ \sf\longmapsto t=\dfrac{v-u}{a}

\\ \sf\longmapsto t=\dfrac{50-0}{10}

\\ \sf\longmapsto t=\dfrac{50}{10}

\\ \sf\longmapsto t=5s

  • Distance=s

Using second equation of kinematics

\boxed{\sf s=ut+\dfrac{1}{2}at^2}

\\ \sf\longmapsto s=0(5)+\dfrac{1}{2}(10)(5)^2

\\ \sf\longmapsto s=5(5)^2

\\ \sf\longmapsto s=5(25)

\\ \sf\longmapsto s=125m

Similar questions