Physics, asked by Mrkerhin4288, 11 months ago

A body starts from rest from the origin with an acceleration of 3 m//s(2) along the x-axis and 4 m//s^(2) along the y-axis. Its distance from the origin after 2 s will be

Answers

Answered by Anonymous
15

\huge\fcolorbox{red}{pink}{Answer}

Given:

 \rm \: initial \: velocity = 0 \:  \frac{m}{s}  \\  \rm \: acceleration \: along \: x \: axis = 3 \hat{i} \:  \frac{m}{ {s}^{2} }  \\   \rm \: acceleration \: along \: y \: axis = 4 \hat{j} \:  \frac{m}{ {s}^{2} }

To Find:

Distance from origin after 2 s

Formula:

Distance covered by body in acceleratory motion is given by

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag \:  \underline{ \boxed{ \bold{ \rm{ \pink{d = ut +  \frac{1}{2} a {t}^{2} }}}}} \:  \dag

Calculation:

 \implies \rm \: d = (0 \times 2) +  \frac{1}{2} \times  (3 \hat{i} + 4 \hat{j}) \times ( {2})^{2}  \\  \\  \therefore \rm \: d =  2(3 \hat{i} + 4 \hat{j}) \\  \\  \therefore \:  \underline{ \boxed{ \red{ \rm{d = 6 \hat{i} + 8 \hat{j} = 10 \: m}}}}

Answered by ShivamKashyap08
7

Answer:

  • The distance (d) after 2 sec will be 10 meters.

Given:

  1. Acceleration along x-axis (a_x) = 3 m/s²
  2. Acceleration along y-axis (a_y) = 4 m/s²
  3. Initial velocity (u) = 0 m/s.

Explanation:

\rule{300}{1.5}

From the relation we know,

a = √ (a_x)² + (a_y)²

Where,

  • a Denotes Acceleration.
  • a_x Denotes acceleration at x-axis.
  • a_y Denotes Acceleration at y-axis.

Now,

⇒ a = √ (a_x)² + (a_y)²

Substituting the values,

⇒ a = √ (3)² + (4)²

⇒ a = √ 9 + 16

⇒ a = √ 25

⇒ a = 5

a = 5 m/s².

\rule{300}{1.5}

\rule{300}{1.5}

From Second Kinematic Equation we know,

S = u t + 1 / 2 a t²

Where,

  • S Denotes Displacement.
  • u Denotes Initial velocity.
  • t Denotes Time taken.
  • a Denotes Acceleration.

Now,

⇒ S = u t + 1 / 2 a t²

Substituting the values,

⇒ d = 0 × 2 + 1 / 2 × 5 × (2)²

∵ [ S = d ; t = 2 sec ; a = 5 m/s² ]

⇒ d = 0 + 1 / 2 × 5 × 4

⇒ d = 1 / 2 × 5 × 4

⇒ d = 5 × 2

⇒ d = 10

d = 10 m.

The distance (d) after 2 sec will be 10 meters.

\rule{300}{1.5}

Similar questions