Physics, asked by pradyumna8472, 2 months ago

A body starts from rest with 2/4 uniform acceleration of 2m/s2. Find the distance covered by the body in 2s​

Answers

Answered by Anonymous
54

Answer:

Appropriate Question :-

  • A body starts from rest with uniform acceleration of 2 m/s². Find the distance covered by the body in 2 seconds.

Given :-

  • A body starts from rest with uniform acceleration of 2 m/s².

To Find :-

  • What is the distance covered by the body.

Formula Used :-

\clubsuit Second Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{s =\: ut + \dfrac{1}{2}at^2}}}

where,

  • s = Distance Covered
  • u = Initial Velocity
  • t = Time Taken
  • a = Acceleration

Solution :-

Given :

  • Initial Velocity (u) = 0 m/s
  • Acceleration (a) = 2 m/
  • Time Taken (t) = 2 seconds

According to the question by using the formula we get,

\longrightarrow \sf s =\: (0)(2) + \dfrac{1}{2} \times (2)(2)^2

\longrightarrow \sf s =\: 0 \times 2 + \dfrac{1}{2} \times 2 \times 2 \times 2

\longrightarrow \sf s =\: 0 + \dfrac{1}{2} \times 2 \times 4

\longrightarrow \sf s =\: 0 + \dfrac{1}{\cancel{2}} \times {\cancel{8}}

\longrightarrow \sf s =\: 0 + 4

\longrightarrow \sf\bold{\red{s =\: 4\: m}}

{\small{\bold{\underline{\therefore\: The\: distance\: covered\: by\: the\: body\: is\: 4\: m\: .}}}}

Answered by Anonymous
68

\huge \mathcal {-:Solution:-}

__________________________________

 \sf \red{\underline{\underline{Given\: data:}}}

 \dashrightarrow \tt{Acceleration=2m/s^{2}}

 \dashrightarrow \tt{Time\: taken=2s}

★As the question says, that a body starts from rest:

 \dashrightarrow \tt{Intial\: Velocity=0}

__________________________________

 \sf \blue{\underline{\underline{To\: discover:}}}

★The distance covered by the body in 2s=?

__________________________________

 \sf \pink{\underline{\underline{Kinematic\: equation\: to\: be\: used:}}}

\large \implies \tt{S=ut+\frac{1}{2}at^{2}}

★where,

 \to {S=Distance\: covered\: by\: the\: body}

 \to {u=Initial\: Velocity}

 \colon \implies {Zero\: in\: this\: case}

 \to {a=Acceleration}

 \to {t=time}

__________________________________

★Supplanting the values given in the equation,

 \colon \to \tt{S=ut+\frac{1}{2}at^{2}}

 \colon \to \tt{S=0\times2+\frac{1}{2}\times2\times(2)^{2}}

 \colon \to \tt{S=0+\frac{1}{2}\times2\times4}

 \colon \to \tt{S=0+\frac{1}{\cancel{2}}\times{\cancel{2}}\times4}

\large \implies \tt \purple {\fbox{S=4m}}

__________________________________

 \sf \orange{\underline{\underline{Thence,}}}

★The distance covered by the body in 2s is 4m

__________________________________

 \sf \green{\underline{\underline{ kinematic\: equations:}}}

  • The one which we used in this case to determine distance i.e,

\dashrightarrow \tt{ S=ut+\frac{1}{2}at^{2}}

  • To determine velocity,

\dashrightarrow \tt{ v=u+at} where, 'v' is the final velociy

  • The timeless kinematic equation

\dashrightarrow \tt{ v^{2}=u^{2}+as}

  • To find the average displacement

\dashrightarrow \tt{ S=\frac{u+v}{2}\times t}

Similar questions