Physics, asked by jamesedamana13, 4 months ago

a body travels 35m during the 6th second and 45m during the 8th second. find the initial velocity and acceleration​

Answers

Answered by priyadatha
1

Answer:

5m/s²,7.5m/s

Explanation:

displacement during any second St=u+at-½a

35=u+6a-½a

45=u+8a-½a

subtracting 1st equation from the second,

a=5m/s²

substituting to first equation,

u=7.5m/s

Answered by DARLO20
17

\Large\bf{\color{indigo}GiVeN,} \\

  • A body travels 35 m during the 6th second.

  • That body travels 45 m during the 8th second.

\bf\blue{We\:know\:that,} \\

Distance travelled by uniformly accelerated body in nʰ seconds is given by,

\red\bigstar\:\:{\green{\boxed{\bf{\color{peru}S_n\:=\:u\:+\:\dfrac{1}{2}\:a\:(2n\:-\:1)\:}}}} \\

\bf\pink{Where,} \\

  • u is the initial velocity.

  • a is the acceleration of the body.

ƇƛƧЄ - 1 :-

  • n = 6 (6th second)

  • S = 35 m

:\implies\:\:\bf{35\:=\:u\:+\:\dfrac{1}{2}\:a\:(2\times{6}\:-\:1)\:} \\

:\implies\:\:\bf{35\:=\:u\:+\:\dfrac{1}{2}\:a\:(12\:-\:1)\:} \\

:\implies\:\:\bf{35\:=\:u\:+\:\dfrac{1}{2}\:a\times{11}\:} \\

:\implies\:\:\bf{\color{olive}35\:=\:u\:+\:\dfrac{11}{2}\:a\:}--(i) \\

ƇƛƧЄ - 2 :-

  • n = 8 (8th second)

  • S = 45 m

:\implies\:\:\bf{45\:=\:u\:+\:\dfrac{1}{2}\:a\:(2\times{8}\:-\:1)\:} \\

:\implies\:\:\bf{45\:=\:u\:+\:\dfrac{1}{2}\:a\:(16\:-\:1)\:} \\

:\implies\:\:\bf{45\:=\:u\:+\:\dfrac{1}{2}\:a\times{15}\:} \\

:\implies\:\:\bf\red{45\:=\:u\:+\:\dfrac{15}{2}\:a\:}--(ii) \\

\bf\purple{Subtract\:equation(1)\:from\:(2),} \\

\longrightarrow\:\:\bf{45\:-\:35\:=\:(u\:-\:u)\:+\:\Big(\dfrac{15}{2}\:a\:-\:\dfrac{11}{2}\:a\Big)} \\

\longrightarrow\:\:\bf{10\:=\:0\:+\:\Big(\dfrac{15a\:-\:11a}{2}\Big)} \\

\longrightarrow\:\:\bf{10\:=\:\dfrac{4a}{2}} \\

\longrightarrow\:\:\bf{10\:=\:2a} \\

\longrightarrow\:\:\bf{a\:=\:\dfrac{10}{2}} \\

\longrightarrow\:\:\bf\orange{a\:=\:5\:m/s^2} \\

✒ Putting the value of a in the equation(i),

\longrightarrow\:\:\bf{35\:=\:u\:+\:\dfrac{11}{2}\times{5}\:} \\

\longrightarrow\:\:\bf{35\:=\:u\:+\:\dfrac{55}{2}\:} \\

\longrightarrow\:\:\bf{u\:=\:35\:-\:\dfrac{55}{2}\:} \\

\longrightarrow\:\:\bf{u\:=\:\dfrac{70\:-\:55}{2}\:} \\

\longrightarrow\:\:\bf{u\:=\:\dfrac{15}{2}\:} \\

\longrightarrow\:\:\bf\green{u\:=\:7.5\:m\:} \\

\Large\bold\therefore The initial velocity is 7.5 m & acceleration is 5 m/s².

Similar questions