Physics, asked by souvik3824, 1 year ago

a bomb of mass 9 kg explodes into two pieces of masses 3kg and 6 kg the velocity of mass 3 kg is 16 metre per second calculate the kinetic energy of mass 6 kg ​

Answers

Answered by shabaz1031
115

\huge{\sf{\boxed{\boxed{<strong>ANSWER</strong>}}}}

Explanation:

GIVEN:

M1=3kg

M2 = 6kg

V1 = 16m/s

TO FIND:

K.E 2 = ?

According to law of conservation of momentum :

(m1 × v1) + (m2 × V2)=(m1 + m2) ×V

(3×16) + (6×(-v2) = (3+6) × 0( -V2 because both are moving in opposite directions)

48 - (6 × V2) = 0

48=6 ×V2

therefore, v2 = 8m/s

K.E2=MV²

= 1/2 ×6 x 8²

= 3 × 64

=192

Thus,the kinetic energy will be 192joule

Answered by Anonymous
188

\bold{\underline{\underline{\huge{\rm{AnsWer:}}}}}

Kinetic energy of mass 6 kg is 192 Joules.

\bold{\underline{\underline{\large{\rm{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • A bomb of mass 9 kg.
  • The bomb explodes into two pieces
  1. \bold{m_1} = 3 kg.
  2. \bold{m_2} = 6 kg.
  • Velocity of \bold{m_1} = 16 m/sec.
  • Initial Velocity (u) = 0 m/sec
  1. \bold{u_1} = 0 m/sec
  2. \bold{u_2} = 0 m/sec

To FiNd :

  • Kinetic energy of mass 6 kg i.e \bold{m_2}

SoLuTiOn :

We need to first calculate the velocity of \bold{m_2} using conservation of linear momentum.

\bold{\sf{Total\:initial\:momentum\:=\:Total\:Final\:Momentum}}

\rightarrow\bold{\sf{m_1\:\times\:u_1\:+\:m_2\:\times\:u_2\:=\:m_1\:\times\:v_1\:+\:m_2\:\times\:v_2}}

Block in the values,

\rightarrow\bold{\sf{m_1\:\times\:0\:+\:m_2\:\times\:0\:=\:3\:\times\:16\:+\:6\:\times\:v_2}}

\rightarrow\bold{\sf{0=48+\:6\:\times\:v_2}}

\rightarrow\bold{\sf{\:-\:48=\:6\:\times\:v_2}}

\rightarrow\bold{\sf{\dfrac{-48}{6}}\:=\:v_2}

\rightarrow\bold{\sf{-8\:=\:v_2}}

Now, we can calculate the kinetic energy of mass 6 kg using the formula.

FoRmUlA :

\bold{\huge{\boxed{\tt{\red{K.E\:=\:{\dfrac{1}{2}\:mv^2}}}}}}

Since we are calculating the kinetic energy of mass 6 kg i.e \bold{m_2} ,we will consider the value of \bold{v_2} i.e - 8 instead of v.

Block in the values,

\rightarrow\bold{\sf{K.E\:=\:{\dfrac{1}{2}\:\times\:6\:\times\:8^2}}}

\rightarrow\bold{\sf{K.E\:=\:{\dfrac{1}{2}\:\times\:6\:\times\:64}}}

\rightarrow\bold{\sf{K.E\:=\:{\dfrac{384}{2}}}}

\rightarrow\bold{\sf{K.E\:=\:192}}

° Kinetic Energy Of Mass 6 kg is 192 Joules.

Similar questions