Math, asked by ayusht1986, 11 months ago


A borrowed amount of 4000 amounts to 5400 in 5 years. How much will 5600 amount
To in 3 years at the same rate? ​

Answers

Answered by TRISHNADEVI
21

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given, \:  \: }} \\   \\ \text{ \underline{ \:In first case, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{Principle, P_1 = Rs. 4000} \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \tt{Amount , A_1 = Rs. 5400} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{Times, n_1 = 5  \: years} \\  \\  \mathfrak{ \: Suppose, \: } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \text{Rate of interest = r}

If interest is calculated in Simple Interest, then

 \:  \:  \:  \:  \:  \:  \:  \tt{S.I._1 = A_1 - P_1 } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{= Rs. (5400 - 4000) } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{= Rs. 1400}

 \underline{ \mathfrak{ \:  \: We  \:  \: know \:  \:  that, \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed {\bold{S.I. =  \frac{P \times \: r \times \: n }{100} }}

 \underline{ \bold{ \:  \: A.T.Q., \:  \: }} \\  \\   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \tt{1400 =  \frac{4000 \times r \times 5}{100} } \\  \\  \tt{ \implies \:140000 = 20000 \times r } \\  \\  \tt{ \implies \:r =  \frac{140000}{20000}  } \\  \\  \:  \:  \:  \:  \:  \:  \tt{ \therefore \:  \: r = 7 \: }

 \:  \:  \:  \:  \:  \tt{ \therefore \: Rate \:  \:  of \:  \:  interest, \: r = 7\%}

  \mathfrak{Now,} \\  \\ \underline{ \text{ \: In the second case, \: }} \\  \\  \underline{ \mathfrak{ \: Given, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{Principle, P_2 = Rs. 5600} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{Time, n_2 = 3  \: years.} \\  \\   \:  \:  \: \tt{Rate \:  of  \: interest, r = 7\%}

 \underline{ \mathfrak{ \:  \: To \:  \:  find :-  \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ Amount , A_2 = ?}

As interest is calculated under Simple Interest,

 \:  \:  \:  \:  \:  \:  \:  \tt{S.I._2 =  \frac{P_2 \times r \times n_2 }{100} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \: =  \frac{5600 \times 7 \times 3}{100}  } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ = 1176 \: }

 \tt {\therefore \:  \: Amount, A_2 = P_2 + S.I._2 } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{= Rs. (5600 + 1176)} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \tt{ = Rs. 6776}

 \therefore \:  \:  \text{ \red{Rs. 5600} \:  will be amounted to  \red{Rs. 6776} \:  } \\  \text{at the same rate of interest in which  } \\  \text{\red{Rs. 4000} \:  amounts to  \red{Rs. 5400}.}

Answered by Aɾꜱɦ
11

Answer:

\small\underline\textsf{1 \:case \:= \:7\: Rate \:of \:interest }

\small\underline\textsf{ 2\: case\: = \:6776 \:Amount }

\bf\red{Given}\begin{cases}\tt\blue{Principal= 4000} \\ \tt\orange{Amount=5400} \\\tt\green{Time=5\:years}\\\tt\orange{Rate\: of \:interest = ?}\end{cases}

\huge\underline\textsf{Explantion:- }

\rightarrow\bf S.I.1 = A1 - P1

\rightarrow\bf(5400 - 4000) \\ \rightarrow\bf1440

\large\underline\textsf{Formula \:Used }

\rightarrow\boxed{\bf S.I =  \frac{P \times R \times N}{100}}  \\

\large\underline\textsf{A.T.Q }

\rightarrow\bf 1400 =  \frac{4000 \times R \times 5}{100}

\rightarrow\bf r =  \frac{\cancel{140000}}{\cancel{20000}}

\rightarrow\bf r = 7

\large\underline\textsf{Rate \: of \:interest \:=7}

 \rule{300}{2}

\large\underline\textbf{Second\: case }

\huge\underline\textsf{Explantion:- 2 }

\tt\red{Given}\begin{cases}\sf\green{Principal=5600} \\ \sf\purple{Time=3 \:years} \\\bf\pink{Rate\: of \:interest\: =7} \\ \tt{Amount=?}\end{cases}

\boxed{\bf S.I.2 = P \times R \times N}

\boxed{\bf \frac{56\cancel0\cancel0 \times 7 \times 3}{1\cancel0\cancel0} } \\  \boxed{\bf{\red{= 1176}}}

 \rule{300}{2}

\large\underline\textsf{Amount:- }

\rightarrow\bf p2 + s.i.2

\rightarrow\bf (5600 + 1176)

\rightarrow\bf amount = 6776

\small\underline\textsf{1 \:case \:= \:7\: Rate \:of \:interest }

\small\underline\textsf{ 2\: case\: = \:6776 \:Amount }

Similar questions