Math, asked by vaishnavsuresh, 1 year ago

a borrowed amount of 4000 amounts to 5400 in 5 years. how much will 5600 amount to in 3 years at the same rate?

Answers

Answered by dAsh7
83
So.. ₹4000 amounts to ₹5400 in 5 years.
.°. increase in amount= ₹(5400-4000)
= ₹1400
So.. ₹1400 is increased in 5 years.
Therefore, rate of increase is ₹(1400/5) = ₹280
Now, the ques is how much will ₹5600 amount to, at the same rate, in 3 years.
.°. In 3 years..
Increased amount would be= ₹(280×3)
= ₹840
.°. Total amount after three years= ₹(5600+840) = ₹6440

Hope u find this helpful!:)
Answered by Aɾꜱɦ
23

Answer:

\small\underline\textsf{1 \:case \:= \:7\: Rate \:of \:interest }

\small\underline\textsf{ 2\: case\: = \:6776 \:Amount }

\bf\red{Given}\begin{cases}\tt\blue{Principal= 4000} \\ \tt\orange{Amount=5400} \\\tt\green{Time=5\:years}\\\tt\orange{Rate\: of \:interest = ?}\end{cases}

\huge\underline\textsf{Explantion:- }

\rightarrow\bf S.I.1 = A1 - P1

\rightarrow\bf(5400 - 4000) \\ \rightarrow\bf1440

\large\underline\textsf{Formula \:Used }

\rightarrow\boxed{\bf S.I =  \frac{P \times R \times N}{100}}  \\

\large\underline\textsf{A.T.Q }

\rightarrow\bf 1400 =  \frac{4000 \times R \times 5}{100}

\rightarrow\bf r =  \frac{\cancel{140000}}{\cancel{20000}}

\rightarrow\bf r = 7

\large\underline\textsf{Rate \: of \:interest \:=7}

 \rule{300}{2}\large\underline\textbf{Second\: case }

\huge\underline\textsf{Explantion:- 2 }

\tt\red{Given}\begin{cases}\sf\green{Principal=5600} \\ \sf\purple{Time=3 \:years} \\\bf\pink{Rate\: of \:interest\: =7} \\ \tt{Amount=?}\end{cases}

\boxed{\bf S.I.2 = P \times R \times N}

\boxed{\bf \frac{56\cancel0\cancel0 \times 7 \times 3}{1\cancel0\cancel0} } \\  \boxed{\bf{\red{= 1176}}}

 \rule{300}{2}

\large\underline\textsf{Amount:- }

\rightarrow\bf p2 + s.i.2

\rightarrow\bf (5600 + 1176)

\rightarrow\bf amount = 6776

\small\underline\textsf{1 \:case \:= \:7\: Rate \:of \:interest }

\small\underline\textsf{ 2\: case\: = \:6776 \:Amount }

Similar questions