A box contains 12 balls of which some are red in colour .If 6more red balls are put in the box and a ball is drawn at random the probability of drawing a red ball doubles than. what it was before .Find the number of red balls in the bag.
Answers
Answered by
22
here let the no. of red balls be x. now probability of getting red ball P, = x/12
again when 6 more are added, the new probability, P1 = x/18 , (12+6)
also x+6/18 = 2x/12 according to question. therefore x = 3
again when 6 more are added, the new probability, P1 = x/18 , (12+6)
also x+6/18 = 2x/12 according to question. therefore x = 3
aryadas:
hmmm
Answered by
59
HEY BUDDY..!!!
HERE'S THE ANSWER..
____________________________
♠️ P1 = Portability of getting red ball
⏺️ Total balls in bag = 12
⏺️let number of red balls be ( x )
✔️ { Probability = favourable outcomes / total outcomes }
♠️ P1 = number of red balls / total balls
=> [ P1 = x / 12 ]
▶️ After adding 6 more red balls
⏺️ number of red balls = x + 6
⏺️ total number of ball = 12 + 6 = 18
▶️P2 = probability of getting red balls after adding 6 red balls
♠️ [ P2 = ( x + 6 ) / 18 ]
▶️ Now , If 6 more red balls are put in the box and a ball is drawn at random the probability of drawing a red ball doubles
⏺️ According to this statement
♠️ 2 × P 1 = P 2
⏺️ Now putting the values
=> 2 × P 1 = P 2
=> 2 ( x / 12 ) = ( x + 6 ) / 18
=> x / 6 = ( x + 6 ) / 18
=> x = 6 ( x + 6 ) / 18
=> x = ( x + 6 ) / 3
=> 3 x = x + 6
=> 3 x - x = 6
=> 2 x = 6
=> [ x = 3 ] ✔️✔️
♠️ So the total number of red ball is 3 ( before adding 6 balls )
HOPE HELPED..
JAI HIND..
:-)
HERE'S THE ANSWER..
____________________________
♠️ P1 = Portability of getting red ball
⏺️ Total balls in bag = 12
⏺️let number of red balls be ( x )
✔️ { Probability = favourable outcomes / total outcomes }
♠️ P1 = number of red balls / total balls
=> [ P1 = x / 12 ]
▶️ After adding 6 more red balls
⏺️ number of red balls = x + 6
⏺️ total number of ball = 12 + 6 = 18
▶️P2 = probability of getting red balls after adding 6 red balls
♠️ [ P2 = ( x + 6 ) / 18 ]
▶️ Now , If 6 more red balls are put in the box and a ball is drawn at random the probability of drawing a red ball doubles
⏺️ According to this statement
♠️ 2 × P 1 = P 2
⏺️ Now putting the values
=> 2 × P 1 = P 2
=> 2 ( x / 12 ) = ( x + 6 ) / 18
=> x / 6 = ( x + 6 ) / 18
=> x = 6 ( x + 6 ) / 18
=> x = ( x + 6 ) / 3
=> 3 x = x + 6
=> 3 x - x = 6
=> 2 x = 6
=> [ x = 3 ] ✔️✔️
♠️ So the total number of red ball is 3 ( before adding 6 balls )
HOPE HELPED..
JAI HIND..
:-)
Similar questions