Math, asked by Anitakharat, 9 months ago

A box contains 500 candles each of length 10 cm and diameter14 mm find volume of wax in the box

Answers

Answered by Anonymous
3

❏ Question:-

@ A box contains 500 candles each of length 10 cm and diameter14 mm find volume of wax in the box.

❏ Solution:-

Given :-

• length (l) of each candle= 10 cm.

• base diameter (d) of each candle=14 cm.

• No. of candles= 500 pcs.

✦To Find:-

• Volume of wax in the box = ?hey

✦Explanation:-

Base diameter (d) of each candle=14 cm.

Base Radius(r) of each candle=\frac{\cancel{14}}{\cancel2}\:cm=7 \:cm

Hence,

Volume of each candle,

\sf\longrightarrow\boxed{ V_{\red{each\:candle}}=\pi r^2 l}

\sf\longrightarrow V_{\red{each\:candle}}=\frac{22}{7} \times7^2 \times10\:\:cm^3

\sf\longrightarrow V_{\red{each\:candle}}=\frac{22}{\cancel7} \times\cancel7\times7 \times10\:\:cm^3

\sf\longrightarrow \boxed{V_{\red{each\:candle}}=22\times7 \times10\:\:cm^3}

\bf\therefore Volume of wax in the box=Volume of 500 candles,

\sf\longrightarrow V_{wax\:in\:the\:box}=1540\times500\:\:cm^3

\sf\longrightarrow \boxed{V_{wax\:in\:the\:box}=7,70,000\:\:cm^3}

\bf\therefore Volume of wax in the box=7,70,000 cm³.

━━━━━━━━━━━━━━━━━━━━━━━

Formula used :-

━━━━━━━━━━━━━━━━━━━━━━━

✦ CYLINDER✦

For a right circular cylinder of base radius r and height h,

\sf\longrightarrow\boxed{ L.S.A=2\pi r h}

\sf\longrightarrow\boxed{ T.S.A.=2\pi r (r+h)}

\sf\longrightarrow \boxed{Volume=\pi r{}^{2}h}

Where, •L.S.A.=Curved Surface area.

•T.S.A.=Total Surface Area.

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

please mark it if it's useful.

Similar questions