Physics, asked by jayarora2004, 10 months ago


A box contains 7 red balls, 8 green balls and 5 white balls. A ball is
drawn at random from the box. Find the probability that the ball is:
) white
b) neither red nor white.

Answers

Answered by sethrollins13
120

✯✯ QUESTION ✯✯

A box contains 7 red balls, 8 green balls and 5 white balls. A ball is drawn at random from the box. Find the probability that the ball is:

a) white

b) neither red nor white.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

✰✰ ANSWER ✰✰

⇝Red\:Balls=7

⇝Green\:Balls=8

⇝White\:Balls=5

Total\:Balls=20

(a)White Balls

Probability=\dfrac{No.\:of\:fav.\:Outcomes}{Total\:no.\:of\:Outcomes}

⇝\cancel\dfrac{5}{20}⟹\dfrac{1}{4}

(b)neither red nor white

⇝Total\:Balls-Red\:balls-White\:Balls

⇝20-7-5

⇝8\:balls

Probability=\dfrac{No.\:of\:fav.\:Outcomes}{Total\:no.\:of\:Outcomes}

\cancel\dfrac{8}{20}⟹\dfrac{2}{5}

Answered by SparklingThunder
6

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

A box contains 7 red balls , 8 green balls and 5 white balls. A ball is drawn at random from the box . Find the probability that the ball is :

a) white

b) neither red nor white.

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

Probability that the ball is white = 0.25

Probability that the ball is neither red nor white = 0.4

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • No. of red balls = 7

  • No. of green balls = 8

  • No. of white balls = 5

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

The probability that the ball is :

  • a) white

  • b) neither red nor white.

\green{ \large \underline{ \mathbb{\underline{FORMULA \:  USED: }}}}

  \displaystyle\purple{ \boxed{ \textsf{Probability}=  \frac{ \textsf{No. of favourable outcomes}}{ \textsf{Total no.  of outcomes}}  }}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

Total no. of balls = No. of red balls + No. of green balls + No. of white balls

Total no. of balls = 7 + 8 + 5

Total no. of balls = 20

\green{ \bf \underline{ \mathbb{\underline{a ) \:  WHITE  \:  \: BALLS: }}}}

  \displaystyle\sf Probability=  \frac{ \textsf{No. of favourable outcomes}}{ \textsf{Total no.  of outcomes}}

  \displaystyle \longrightarrow\sf Probability=  \frac{ \textsf{5}}{ \textsf{20}}  \:  \:  \:    \\  \\  \displaystyle \longrightarrow\sf Probability=   \frac{1}{4}  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow\sf Probability= 0.25

\green{ \bf \underline{ \mathbb{\underline{b) \:  NEITHER  \: RED \:  NOR \:  WHITE: }}}}

No. of neither red nor white balls = Total no. of balls - No. of red balls - No. of white balls

No. of neither red nor white balls = 20 - 7 - 5

No. of neither red nor white balls = 8

  \displaystyle\sf Probability=  \frac{ \textsf{No. of favourable outcomes}}{ \textsf{Total no.  of outcomes}}

  \displaystyle \longrightarrow\sf Probability=  \frac{ \textsf{8}}{ \textsf{20}}  \:  \:  \:    \\  \\  \displaystyle \longrightarrow\sf Probability=   \frac{2}{5}  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow\sf Probability= 0.4 \:  \:

Similar questions