Math, asked by Anonymous, 5 months ago

A box of weight 100 N is lifted to a height of 10 m above ground. How much potential energy will be stored in the box?
9800 J
1000 J
2000 J
none of the above​

Answers

Answered by Anonymous
3

\large{\underline{\underline{\sf{ \maltese \: {Given:-}}}}}

  • Weight = 100 N
  • Height = 10 m

\large{\underline{\underline{\sf{ \maltese \: {To \: find:-}}}}}

Potential energy = ?

\large{\underline{\underline{\sf{ \maltese \: {Solution:-}}}}}

➊ We know that:–

\qquad \bull \bf \: {Weight = Mass \times Acceleration }

\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: {100 = mass \times 10 } \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: { \dfrac{100}{10} = mass } \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: { mass = \cancel\dfrac{100}{10} } \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: \underline{ \boxed {\sf{mass = 10 \: kg }}} \\\end{gathered}\end{gathered}

➋ We know that:–

\qquad \bull \bf \: { Potential \: energy=mass \times acceleration \times height}

\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: {potential \: energy = 10 \times 10 \times 10 } \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow \underline{ \boxed{\sf \: {potential \: energy = 1000 \: J}}} \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\large \quad \therefore\sf \: { The \: correct \: option \: is \: \underline{\underline{1000 \: J}}} \\\end{gathered}\end{gathered}

\large{\underline{\underline{\sf{ \maltese \: {Answer:-}}}}}

The potential energy is 1000 J.

Answered by Anonymous
3

GiveN :-

  • Weight of box = 110 N

  • Height = 10 m

  • Acceleration due to gravity ( g ) = 9.8 m/s²

To FinD :-

  • Total potential energy stored in the box

SolutioN :-

As we know

\longrightarrow  \boxed{ \blue{\bf Weight = mass × acceleration}} \\  \\ \longrightarrow \sf100 = mass \times 9.8 \\  \\ \longrightarrow \sf mass=  \frac{100}{9.8}

Now potential energy of box is

:\implies \boxed{ \red{ \bf Potential  \: Energy = mgh }}\\  \\:\implies \sf P.E = \frac{100}{9.8} \times 9.8 \times 10 \\  \\:\implies \sf P.E =100 \times 10 \\  \\:\implies  \boxed{ \green{\sf P =1000 \: j}}

Potential energy stored in the box is 1000 J

Similar questions