Math, asked by masterehshbs, 3 months ago

A box was full of balls. 25% of them were red, 2/5 were yellow and the rest were blue. There were 140
blue balls. How many more percent of yellow balls than red balls were there?step by step...​

Answers

Answered by sejalrajivsheth
0

Answer:

400 Balls

Step-by-step explanation:

Let the total balls be x

So,

Red Balls = 1/4x

Yellow Balls = 2/5x

Red Balls + Yellow Balls = 1/4x + 2/5x

                                        = 5/20x +8/20x

                                         =13/20x

Left Balls = Blue Balls = x - 13/20x

                                    =20/20x - 13/20x

                                    = 7/20x

Blue Balls = 140 = 7/20x

                    x = 140*20/7

                        = 400 Balls

Answered by harshitha202034
1

Answer:

There are 15% more Yellow balls than Red balls in box

Step-by-step explanation:

A \:  \: box \:  \: was \:  \: full \:  \: of \:  \: balls \\  \\ 25\% =  \frac{1}{4}  \:  \: of \:  \: them \:  \: were \:  \: Red \\  \frac{2}{5}  \:  \: of \:  \: them \:  \: were \:  \: Yellow \\ Then,  \\ Number \:  \: of \:  \: Remaining \:  \: balls : \\ 1 -  \frac{1}{4}  -  \frac{2}{5}  \\  =  \frac{20 - 5 - 8}{20}  \\  =  \frac{7}{20}  \\  \\ Therefore, \\ Total \:  \: unit \:  \: of \:  \: balls \:  \: in \:  \: box = 20 \\  \\ Remaining \:  \: balls \:  \: were \:  \: Blue \\ Total \:  \: unit \:  \: of   \:  \: Blue\:  \: balls  = 7 \\ Then,  \:  \: Total \:  \: number \:  \: of   \:  \: Blue\:  \: balls :  \\ 20 \times 7 = 140 \\  \\ 25\% =  \frac{1}{4}  \:  \: of \:  \: them \:  \: were \:  \: Red \\ Total \:  \: unit \:  \: of   \:  \: Red\:  \: balls  \\  \frac{1}{_{1 \:  \: } \cancel 4}  \times  \cancel{ 20}_{ \:  \: 5} = 5 \:  \: units \\ Then,  \:  \: Total \:  \: number \:  \: of   \:  \: Red\:  \: balls :   \\ 20 \times 5 = 100 \\  \\  \frac{2}{5}  \:  \: of \:  \: them \:  \: were \:  \: Yellow \\ Total \:  \: unit \:  \: of   \:  \: Yellow\:  \: balls  \\  \frac{2}{ _{1 \:  \: } \cancel 5}  \times  \cancel{ 20}_{ \:  \: 4} = 8 \:  \: units \\ Then,  \:  \: Total \:  \: number \:  \: of   \:  \: Yellow\:  \: balls : \\ 20 \times 8 = 160 \\  \\ Total \:  \: number \:  \: of   \:  \: balls  \:  \: in \:  \: box :  \\ Red :  \:  \:  \:  \:  \:  \: 100 \\ Yellow : 160 \\ Blue : \:  \:  \:  \:  140 \\  -  -   -  -  -  -  -  \\ Total :  \:  \: 400 \\  -  -  -  -  -  -  -  \\  \\\% \:  \: of \:  \: Red \:  \: balls \:  \: in \:  \: box :   \\  \frac{100}{4 \cancel {00}} \times 1 \cancel {00 }  \\  \boxed{ = \underline{ \underline{ 25\%  }}}\\  \\ \% \:  \: of \:  \:  Yellow \: \: balls \:  \: in \:  \: box :  \\  \frac{_{40 \:  \: } \cancel{ 160}}{ _{1 \:  \: } \cancel 4 \cancel{ 00}}  \times 1 \cancel{ 00}  \\  \boxed{ =  \underline{ \underline{ 40\%}}} \\  \\ 40\% - 25\% = 15\%

Similar questions