Physics, asked by saivardhan87, 11 months ago

a boy of mass 5 kg is acted upon by two perpendicular force 8 Newton and 6 Newton give the magnitude and direction of the acceleration of the body​

Answers

Answered by abhi569
55

Answer:

a = 2 m / s^2.

Explanation:

Since the applied forces are perpendicular to each other, angle between them is 90° .

Therefore,

 \implies \sf{ Resultant \:  force}  =  \sqrt{8 {}^{2} + 6 {}^{2}  + 2(8 \times 3 ) \cos(90 \degree)  }N   \\  \\  \implies \sf{ Resultant \:  force}  =  \sqrt{8 {}^{2} + 6 {}^{2}  + 2(8 \times 3 )0 }N \\  \\  \implies \sf{ Resultant \:  force}  =  \sqrt{8 {}^{2} + 6 {}^{2} }N\\  \\  \implies \sf{ Resultant \:  force}  =   \sqrt{64 + 36}N

= > Resultant force = 10N

= > ma = 10N

= > 5 kg. a = 10N

= > a = 2 m/s^2

For direction :

= > tanA = 8 / 6 { A = angle between resultant force and body }

= > tanA = 4 / 3

= > A = \tan^{-1}(\frac{4}{3}) { shows the direction }

Answered by Anonymous
60

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{Given :}}}}

  • Mass of Boy (m) = 5 kg
  • Force1 = 8 N
  • Force2 = 6 N

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

As the force are perpendicular so the angle between them is 90° , And whereas the Formula for the Resultant By Vector addition is :

\large \star{\boxed{\sf{Resultant \: = \: \sqrt{a^2 \: + \: b^2 \: + \: 2ab \cos \theta}}}}

Where,

  • a = 8 N
  • b = 6 N

\implies {\sf{Resultant \: = \: \sqrt{(8)^2 \: + \: (6)^2 \: + \: 2(8)(6) \cos(90)}}} \\ \\ \implies {\sf{Resultant \: = \: \sqrt{64 \: + \: 36 \: + \: 2(8)(6)(0)}}} \\ \\ \implies {\sf{Resultant \: = \: \sqrt{64 \: + \: 36}}} \\ \\ \implies {\sf{Resultant \: = \: \sqrt{100}}} \\ \\ \implies {\sf{Resultant \: = \: 100 \: N}}

Now,

\implies {\sf{ma \: = \: 10}} \\ \\ \implies {\sf{5(a) \: = \: 10}} \\ \\ \implies {\sf{a \: = \: \dfrac{10}{5}}} \\ \\ \implies {\sf{a \: = \: 2 \: ms^{-2}}}

Acceleration is 2 m/s²

Similar questions