Math, asked by rajputpradeep7169, 10 months ago

A boy set 3 marks of each correct sum and lose 2 marks of each incorrect sums he does 24 sums and obtained 37 marks the number of correct sums were

Answers

Answered by Anonymous
4

Correct Question:-

A boy get 3 marks of each correct sum and lose 2 marks of each incorrect sums, he does 24 sums and obtained 37 marks. Find the number of correct sums.

Answer:-

The number of correct sums is 17.

Given:

  • A boy get 3 marks of each correct sum and lose 2 marks of each incorrect sums, he does 24 sums.

  • He obtained 37 marks.

To find:

  • Number of correct sums.

Solution:-

Let the number of correct sums be x and incorrect sums be y.

According to the first condition.

=> x+y=24...(1)

According to the second condition.

=> 3x-2y=37...(2)

Multiply equation (1) by 2, we get

=> 2x+2y=48...(3)

Add equations (2) and (3), we get

3x-2y=37

+

2x+2y=48

__________

5x=85

\sf{\therefore{x=\frac{85}{5}}}

\sf{\therefore} x=17

\sf{\therefore} The number of correct sums is 17.

Answered by TheSentinel
30

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{A \ boy \ set \  3 \ marks \ of \ each \  correct \ sum }

\rm{and \ lose \ 2 \ marks \ of  \ each \  incorrect \ sums}

\rm{he \  does \ 24 \ sums \ and \ obtained \ 37 \ marks. }

\rm{What \ is \ number \ of  \ correct \ sums }

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\blue{\boxed{\red{Number \ of  \ correct \ sums  \ : \ 17}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm\longrightarrow{A \  boy \ get \ 3 \  marks \ of \  each}

\rm{ correct \  sum \ and \  lose \  2 \  marks \  of  \ each}

\rm\longrightarrow{ incorrect sums, he does 24 sums.}

\rm\longrightarrow{He \ obtained \   37 \  marks.}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Number \ of \ correct \ sums}

_________________________________________

\green{\underline{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}}} \\ \\

\rm{Let \ the \ number \ of \ correct \ sums \  be \  m}

\rm{and \  the \ number \ of \ incorrect \ ones \  be \ n.} \\ \\

\rm{Then, \ according \ to \  the \  question} \\ \\

\rm{As, \ he \ attempted \  24  \ questions \  in \  total} \\

\rm\implies{m+n=24 ...........(a)} \\ \\

\rm{he \ gets \  3 \  marks \ for \ correct \  sum}

\rm{ and \  loses \  2 \ marks \ for \  wrong \  sum} \\

\rm\implies{3m-2n=37.........(b)} \\ \\

\rm{Multiplying \ (a) \ by \ 2 \ and \ adding \  it \  to \  (b).} \\

\rm\implies{2m \ + \ 2n \ + \ 3m \ -\ 2n \ = \ 48 \ + \ 37} \\

\rm\implies{5m=85} \\

\rm\therefore{\green{\boxed{\orange{m=17}}}} \\

\rm{From \ equation \ (a)} \\

\rm\implies{17+n=24} \\

\rm\implies{n=24-17} \\

\rm\therefore{\green{\boxed{\orange{n=7}}}} \\

\rm\therefore{He \  did \  17 \ correct \ sums.}

\rm{\blue{\boxed{\red{Number \ of  \ correct \ sums  \ : \ 17}}}}

___________________________________________

\rm\orange{Hope \ it \ helps \ :))}

Similar questions