Math, asked by mvishesh809, 2 months ago

A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an angle
of elevation of 30°. A girl standing on the roof of 20 m high building finds the angle of elevation of the
same bird to be 45°. Both the boy and the girl are on opposite side of the bird. Find the distance of the
bird from the girl.​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let

  • A be the position of the bird.

  • B be the position of Boy on the ground.

  • D be the position of the girl

  • ED be the height of building at which girl is standing.

So,

We have,

  • AB = 100 m

  • Height of building, ED = 20 m

Now,

\rm :\longmapsto\:In \:  \triangle  \: ABC

\rm :\longmapsto\:sin30 \degree \:  = \dfrac{AC}{AB}

\rm :\longmapsto\:\dfrac{1}{2}  = \dfrac{AC}{100}

\bf\implies \:AC \:  =  \: 50 \: m

Now,

  • DE = FC = 20 m

Also,

  • AC = AF + FC

  • AF = AC - FC

  • AF = 50 - 20

  • AF = 30 m.

\rm :\longmapsto\:In \:  \triangle \:  AFD

\rm :\longmapsto\:sin45 \degree \:  = \dfrac{AF}{AD}

\rm :\longmapsto\: \dfrac{1}{ \sqrt{2} }  \:  = \dfrac{30}{AD}

\rm :\longmapsto\:AD = 30 \sqrt{2}

\rm :\longmapsto\:AD = 30 \times 1.41

\rm :\longmapsto\:AD = 42.3 \: m

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions