Math, asked by swetharamagiri99, 1 month ago

a bracket of 40 B (of minus 40 are two given points the locus of peace​

Answers

Answered by athulyakrishna78
0

Answer:

The equation of locus is \frac { x^{ 2 } }{ 4 } -\frac { y^{ 2 } }{ 12 } = 1

4

x

2

12

y

2

=1

Step-by-step explanation:

Given:

A = (4,0) and B(-4,0).

Let P(x, y) be the moving points.

Given, |PA-PB|=4

Using distance formula, \sqrt { ((x_{ 1 }-x_{ 2 })^{ 2 }+(y_{ 1 }-y_{ 2 })^{ 2 }) }

((x

1

−x

2

)

2

+(y

1

−y

2

)

2

)

⇒\sqrt { (x-4)^{ 2 }+(y-0)^{ 2 }) } -\sqrt { ((x+4)^{ 2 }+(y-0)^{ 2 }) } =\quad 4

(x−4)

2

+(y−0)

2

)

((x+4)

2

+(y−0)

2

)

=4

⇒\sqrt { ((x-4)^{ 2 }+(y)^{ 2 }) } =4+\sqrt { ((x+4)^{ 2 }+(y)^{ 2 }) }

((x−4)

2

+(y)

2

)

=4+

((x+4)

2

+(y)

2

)

Squaring both sides, we get (x-4)^{ 2 }-y^{ 2 }=16+(x+4)^{ 2 }+y^{ 2 }+2×4×\sqrt { ((x+4)^{ 2 }+(y)^{ 2 }) }(x−4)

2

−y

2

=16+(x+4)

2

+y

2

+2×4×

((x+4)

2

+(y)

2

)

⇒x^{ 2 }+16-8x+y^{ 2 }=16+x^{ 2 }+16+8x+y^{ 2 }+2×4×\sqrt { ((x+4)^{ 2 }+(y)^{ 2 }) }x

2

+16−8x+y

2

=16+x

2

+16+8x+y

2

+2×4×

((x+4)

2

+(y)

2

)

⇒-8x=16+8x+8×\sqrt { ((x+4)^{ 2 }+(y)^{ 2 }) }−8x=16+8x+8×

((x+4)

2

+(y)

2

)

⇒-8x-8x-16=8 ×\sqrt { ((x+4)^{ 2 }+(y)^{ 2 }) }−8x−8x−16=8×

((x+4)

2

+(y)

2

)

⇒-16x-16=8 × \sqrt { ((x+4)^{ 2 }+(y)^{ 2 }) }−16x−16=8×

((x+4)

2

+(y)

2

)

⇒-2(x+1) = \sqrt { ((x+4)^{ 2 }+(y)^{ 2 }) }−2(x+1)=

((x+4)

2

+(y)

2

)

Again, squaring both sides, we get ⇒4(x^2+2x+1) = (x+4)^2+(y)^24(x

2

+2x+1)=(x+4)

2

+(y)

2

⇒4x^2+8x+4=x^2+8x+16+y^24x

2

+8x+4=x

2

+8x+16+y

2

⇒3x^2-y^2=123x

2

−y

2

=12

⇒\frac { x^{ 2 } }{ 4 } -\frac { y^{ 2 } }{ 12 } = 1

4

x

2

12

y

2

=1 is the equation of locus of the given points.

please mark me brainlist

Similar questions