Math, asked by AA9, 7 months ago

A brick of mass 1 kg and density 2500kg/m3 is completely immerged in a water of density 1000 kg/m3. The mass of water displaced by the brick is a) 1/25 b) 1/2.5kg c) 2.5 Kg d) 0.25 Kg

Answers

Answered by BrainlyConqueror0901
78

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Mass\:displaced=0.4\:kg}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Mass \: of \: brick( m_{1}) = 1 \: kg \\  \\ \tt: \implies Density \: of \: brick(  \rho_{1}) = 2500 \: kg/ {m}^{3}  \\  \\ \tt: \implies Density \: of \:water(  \rho_{2}) = 1000 \: kg {m}^{3}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  Mass \:of \: water \: displaced( m_{2}) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Density( \rho_{1}) =  \frac{Mass( m_{1})}{Volume( v_{1}) }  \\  \\ \tt:  \implies 2500 =  \frac{1}{ v_{1} }  \\  \\ \tt:  \implies  v_{1} =  \frac{1}{2500}  \:  {m}^{3}  -  -  -  -  - (1) \\  \\  \bold{Again , } \\ \tt:  \implies Density( \rho_{2}) =  \frac{Mass( m_{2})}{Volume( v_{1}) } \\  \\ \tt:  \implies 1000 =  \frac{ m_{2} }{ \frac{1}{2500} }  \\  \\ \tt:  \implies 1000 = 2500 \times  m_{2} \\  \\ \tt:  \implies  m_{2} =  \frac{1000}{2500}  \\  \\ \tt:  \implies  m_{2} =  \frac{10}{25}  \\  \\  \green{\tt:  \implies m_{2} =0.4 \: kg} \\  \\   \green{\tt \therefore Mass \: displaced \: is \: 0.4 \: kg}

Answered by Anonymous
76

<font color=red>

⭐Refer Attachment ⭐

Attachments:
Similar questions