Math, asked by kevalpatel9300, 4 months ago

A bridge across a valley is h meters long. There is a temple in the valley directly below the bridge. The angles of depression of the top of the temple from the two ends of the bridge are
 \alpha  \: and \:  \beta Prove that the height of the bridge above the top of the temple is
h{tan \ \: \alpha tan \: \beta } \div tan \:  \alpha  + tan \:  \beta
meters

Answers

Answered by mathdude500
1

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Let the distance between bridge and top of the temple be 'y' meters.

⇛ DC = y,

☆ where C is point on AB such that DC is perpendicular to AB.

☆ Let AB be the length of the bridge, which is 'h' meters.

☆ Let D be the top of the temple.

☆ According to the statement,

☆ ∠BAD=α and ∠ABD=β

─━─━─━─━─━─━─━─━─━─━─━─━─

 \tt \:  ⟼ In  \: right \: \triangle \: ACD

 \tt \:  ⟼ tan \alpha  = \dfrac{DC}{AC}

\tt : \implies \:tan \alpha  = \dfrac{y}{x}

\tt : \implies \:x = \dfrac{y}{tan \alpha } -  -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

 \tt \:  ⟼ In  \: right \: \triangle \: BCD

 \tt \:  ⟼ tan \beta  = \dfrac{DC}{BC}

\tt : \implies \:tan \beta  = \dfrac{y}{h - x}

\tt : \implies \:h - x = \dfrac{y}{tan \beta }

☆ On substituting the value of 'x' from equation (1), we get

\tt : \implies \:h - \dfrac{y}{tan \alpha }  = \dfrac{y}{tan \beta }

\tt : \implies \:h  =  \dfrac{y}{tan \alpha }   +  \dfrac{y}{tan \beta }

\tt : \implies \:h  =  \dfrac{ytan \beta  + ytan \alpha }{tan \alpha \: tan \beta  }

\tt : \implies \:h  =  \dfrac{y(tan \beta  + tan \alpha) }{tan \alpha \: tan \beta  }

\tt : \implies \:y = \dfrac{h \: tan \alpha  \: tan \beta }{tan \beta  \:  +  \: tan \alpha }

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Attachments:
Similar questions