Math, asked by BrainlyHelper, 1 year ago

A bucket has top and bottom diameter of 40 cm and 20 cm respectively. Find the volume of the bucket if its depth is 12 cm. Also, find the cost of tin sheet used for making the bucket at the rate of Rs. 1.20 per dm² . (Use π = 3.14)

Answers

Answered by StylishhhhGirl
7

 \underline \mathbb{ \underline{ \huge SOLUTION   \bf \colon}}

Let the radius of the top part be 'R' and radius of the bottom part be 'r' respectively.

Diameter (Top) = 40 cm 

Radius (R) = 40/2 = 20 cm 

10 cm = 1 dm 

20 cm = 2dm

Diameter (Bottom) = 20 cm

Radius (r) = 20/2 = 10 cm 

10 cm = 1 dm

Height = 12 cm = 1.2 dm

Slant height ('l') = √H² + (R - r)²

= √(1.2)² + (2 - 1)²

= √1.44 + 1

= √2.44

= 1.56

So, slant height (l) is 1.56 dm

Area of the tin sheet used for bucket = Curved surface area of the bucket + Area of the base

= π(R + r)*l + πr²

⇒ 3.14*(2 + 1)*1.56 + 3.14*1²

⇒(3.14*3*1.56) + 3.14

⇒ 14.6952 + 3.14

⇒ 17.8352 sq dm

CSA of the tin sheet used = 17.8352 sq dm

Rate of tin sheet = Rs. 1.2 per sq dm

Total cost of the tin sheet used for making the bucket = 17.8352*1.2

= Rs. 21.40

Volume = 1/3πh(R² + r² + R*r)

= 1/3*3.14*1.2*(2² + 1² + 2*1)

= 1/3*3.14*1.2*7

= 26.376/3

Volume = 8.792 cu dm

Answered by pankajroy2
4

here is ur ans....

Diameter (Top) = 40 cm

Radius (R) = 40/2 = 20 cm

10 cm = 1 dm

20 cm = 2dm

Diameter (Bottom) = 20 cm

Radius (r) = 20/2 = 10 cm

10 cm = 1 dm

Height = 12 cm = 1.2 dm

Slant height ('l') = √H² + (R - r)²

= √(1.2)² + (2 - 1)²

= √1.44 + 1

= √2.44

= 1.56

So, slant height (l) is 1.56 dm

Area of the tin sheet used for bucket = Curved surface area of the bucket + Area of the base

= π(R + r)*l + πr²

⇒ 3.14*(2 + 1)*1.56 + 3.14*1²

⇒(3.14*3*1.56) + 3.14

⇒ 14.6952 + 3.14

⇒ 17.8352 sq dm

CSA of the tin sheet used = 17.8352 sq dm

Rate of tin sheet = Rs. 1.2 per sq dm

Total cost of the tin sheet used for making the bucket = 17.8352*1.2

= Rs. 21.40

Volume = 1/3πh(R² + r² + R*r)

= 1/3*3.14*1.2*(2² + 1² + 2*1)

= 1/3*3.14*1.2*7

= 26.376/3

Volume = 8.792 cu

Similar questions