Math, asked by jagdhanesamson23, 9 months ago

A bucket is frustum shaped. Its height is 56 cm. Radii of circular faces are 9 cm and 12 cm. Find the capacity of the bucket. (⫪ = 22/7 )

Answers

Answered by hipsterizedoll410
6

Answer: 19536 cm³

Given:

\sf\text{Height of the bucket(h)=56 cm}\\Radius\:of\;upper\:part(R)=12\:cm \\Radius\;of\;lower\;part(r)=9\: cm

To find:

\sf\text{Capacity or volume of the bucket}

Explanation:

\sf\text{Volume of frustum}=\frac{1}{3}\pi h(R^2+r^2+R\times r )

\sf\text{Substituting values of h,R,r in the above equation,}

\sf\frac{1}{3}\times\frac{22}{7}  \times56(12^2+9^2+12\times9)

\sf\frac{1}{3}\times\frac{22}{7}  \times56(144+81+108)

\sf\frac{1}{3}\times\frac{22}{7} \times56\times333

\sf\frac{22}{7}\times 56\times 111

\sf\frac{22}{7}\times 6216

\sf19536\:cm^3

Therefore, the capacity of the bucket is 19536 cm³

Similar questions