Physics, asked by sumna2003, 4 months ago

A bullet fired at an angle 30^(@) with the horizontal hits the ground 5.0km away.To decrease the range of bullet to 3km keeping muzzle speed constant the angle of projection should be​

Attachments:

Answers

Answered by Anonymous
7

Let u be the initial velocity of projection and g be the acceleration due to gravity.

Range is generally defined mathematically as,

 \star  \: \boxed{ \boxed{ \sf r =  \dfrac{u {}^{2}   \sin(2 \alpha ) }{g} }}

When range is 5Km and angle of projection is 30 degrees.

\sf 5=  \dfrac{u {}^{2}   \sin(60) }{g}  -  -  -  - (1)

When range is 3Km,

\sf 3=  \dfrac{u {}^{2}   \sin(2  \gamma ) }{g}  -  -  -  - (2)

Dividing both the equations,

 \longrightarrow \sf \:  \dfrac{5}{3} =  \dfrac{ \sin(60) }{ \sin(2 \gamma ) }   \\  \\ \longrightarrow \sf  \dfrac{5}{3}  =  \dfrac{ \sqrt{3} }{2 \sin( 2\gamma ) } \\  \\ \longrightarrow \sf  \dfrac{10}{3 \sqrt{3} }  = \dfrac{1}{ \sin( 2 \gamma ) }   \\  \\ \longrightarrow \sf    \sin(2 \gamma )  =  \dfrac{3 \sqrt{3} }{10} \\  \\ \longrightarrow \sf    2 \gamma   =  sin {}^{ - 1} \dfrac{3 \sqrt{3} }{10}  \\  \\  \longrightarrow \underline{ \boxed{ \sf \gamma  =  \dfrac{1}{2} {sin}^{ - 1}  \dfrac{3 \sqrt{3} }{10}   }}

Option (C) is correct..

Similar questions