Physics, asked by shekhar7251, 6 months ago

a bullet fired from a rifle attains a maximum height H of 25 m and a horizontal range of 200 m. Find the angle of projection.

Please solve this on a paper and post image ​

Answers

Answered by Anonymous
4

Given:

\sf :\to Maximum \: height,h =  \dfrac{ {u}^{2}  { \sin}^{2} \theta }{2g}  = 25m \\  \\  \\ \sf :\to Maximum \: range,R =  \dfrac{ {u}^{2} \sin2\theta }{g}  = 200m

Find:

\sf :\to angle \: of \: projection

Solution:

\sf :\implies Maximum \: height,h =  \dfrac{ {u}^{2}  { \sin}^{2} \theta }{2g}  = 25m ....(i) \\  \\  \\ \sf :\implies Maximum \: range,R =  \dfrac{ {u}^{2} \sin2\theta }{g}  = 200m....(ii) \\  \\  \\  \\ \sf  :\to  dividing \: eq(i) \: by \: (ii) \: we \: get, \\  \\  \\  \sf :  \implies \dfrac{ {u}^{2}  { \sin}^{2} \theta }{2g}  \times \dfrac{g}{ {u}^{2} \sin2\theta } =  \frac{25}{200} \\  \\  \\  \sf :  \implies \frac{ { \sin}^{2} \theta }{2 \sin 2 \theta}  =   \frac{1}{8} \\  \\  \\  \sf :  \implies 4 { \sin}^{2}  \theta =  \sin 2 \theta \\  \\  \\  \sf :  \implies 4\sin\theta \times \sin\theta  = 2\sin\theta  \times  \cos \theta \\  \\  \\  \sf :  \implies \frac{ \sin \theta}{\cos \theta}  =  \frac{1}{2}  \\  \\  \\  \sf :  \implies \tan \theta =  \frac{1}{2} \\  \\  \\  \sf :  \implies \theta  =   { \tan}^{ - 1} ( \frac{1}{2} ) \\  \\  \\  \sf :  \implies 26 \degree-34'

 \underline{\underline{\sf\therefore required \: angle \: of \: projection \: is \: 26 \degree-34'}}

Similar questions