Physics, asked by bijayrai62, 1 year ago

A bullet is fired with a velocity of 100m/s from the ground at an angle of 60° with the horizontal. calculate the horizontal range covered by the bullet. Also calculate the maximum height attained.​

Answers

Answered by Anonymous
31

\huge\underline\blue{\sf Answer:}

\red{\boxed{\sf Horizontal\:Range(R)=500\sqrt{3}}}

\red{\boxed{\sf Maximum\:Height(H_{max})=125m}}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Velocity of Bullet (v)=100m/s

  • Angle (\theta)=60°

\large\underline\pink{\sf To\:Find: }

  • Horizontal Range (R) = ?

  • Maximum Height attained (\sf{H_{max}})=?

━━━━━━━━━━━━━━━━━━━━━━━━━

1. Horizontal Range (R) :

\large{♡}\large{\boxed{\sf R=\frac{u^2sin2\theta}{g}}}

\large\implies{\sf \frac{(100)^2×sin60°}{10}}

[ We know sin60° = \sf{\frac{\sqrt{3}}{2}} ]

\large\implies{\sf \frac{(100)^2×\sqrt{3}}{10×2}}

\large\implies{\sf R=500\sqrt{3} }

\huge\red{♡}\red{\boxed{\sf Horizontal\:Range(R)=500\sqrt{3}}}

_______________________________________

\Large\underline{\sf 2.Maximum\: Height\:(H_{max})}

\large{♡}\large{\boxed{\sf H_{max}=\frac{u^2sin^2\theta}{2g} }}

\large\implies{\sf \frac{(100)^2×sin^230°}{2g}}

[ We know sin30° =1/2 ]

\large\implies{\sf \frac{(100)^2×1×1}{2×10×2×2}}

\large\implies{\sf H_{max}=125m}

\huge\red{♡}\red{\boxed{\sf Maximum\:Height(H_{max})=125m}}

Answered by ShivamKashyap08
12

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Initial velocity (u) = 100 m/s.
  • Angle of projection ( { \theta} ) = 60°.
  • g = 10 m/s².

\huge{\bold{\underline{Explanation:-}}}

RANGE OF THE PROJECTILE,

1.Applying the Range formula:-

\large{\star \: {\boxed{ \tt R = \dfrac{u^2 \sin 2 \theta}{g}}}}

Substituting the values,

\large{ R = \dfrac{(100)^2 \sin 2 \times 60}{10}}

\large{ R = \dfrac{(100)^2 \sin 120}{10}}

As we know,

sin 120° = √3/2.

Substituting,

\large{R = \dfrac{10000 \times \dfrac{ \sqrt{3}}{2}}{10}}

\large{R = \dfrac{ \cancel{10000} \times \dfrac{ \sqrt{3}}{2}}{ \cancel{10}}}

\large{R = 1000 \times \dfrac{ \sqrt{3}}{2}}

\large{R = \cancel{1000} \times \dfrac{ \sqrt{3}}{ \cancel{2}}}

The result comes as,

\huge{\boxed{\boxed{ \tt R = 500 \sqrt{3} \: meters}}}

\rule{300}{1.5}

MAXIMUM HEIGHT OF PROJECTILE

2.Applying Maximum height formula,

\large{\star \: {\boxed{ \tt H = \dfrac{u^2 \sin^2 \theta}{2g}}}}

Substituting the values,

\large{ H = \dfrac{(100)^2  \sin^2 60}{2 \times 10}}

As sin 60 = √3/2

Squaring,

sin² 60 = (√3/2)².

sin² 60 = 3/4.

Substituting it in the above equation,

\large{H = \dfrac{10000  \times \dfrac{3}{4}}{20}}

\large{H = \dfrac{10000 \times 3}{80}}

\large{H = \dfrac{ \cancel{10000} \times 3}{ \cancel{80}}}

\large{H = 125  \times 3}

\huge{\boxed{\boxed{ \tt H = 375 \: meters}}}

So,the Range of projectile is 5003 meters, and,

Height attained by the projectile is 375 meters.

Similar questions