Physics, asked by raiashu1479, 9 months ago

A bullet is moving with a velocity v collide a stationary block and losees its 10% energy by travelling 1cm distance find the distance of penitration

Answers

Answered by shadowsabers03
0

\displaystyle\large\boxed {\sf {Distance\ of\ Penetration=10\ cm}}

By travelling 1 cm it loses 10% of its kinetic energy actually. Thus, change in kinetic energy,

\displaystyle\longrightarrow\sf{\Delta K=-\dfrac {1}{10}\cdot\dfrac {1}{2}mu^2}

[10% = 1/10. Negative sign is because final kinetic energy is less than initial one. Loss of energy is there.]

\displaystyle\longrightarrow\sf{\Delta K=-\dfrac {1}{20}mu^2}

By work energy theorem,

\displaystyle\longrightarrow\sf{Fs=\Delta K}

\displaystyle\longrightarrow\sf{Fs=-\dfrac {1}{20}mu^2}

Here, \displaystyle\sf {s=1\ cm=10^{-2}\ m.} Then,

\displaystyle\longrightarrow\sf{10^{-2}F=-\dfrac {1}{20}mu^2}

\displaystyle\longrightarrow\sf{F=-\dfrac {1}{20\times 10^{-2}}mu^2}

\displaystyle\longrightarrow\sf{ma=-5mu^2}

\displaystyle\longrightarrow\sf{a=-5u^2}

Thus, by third kinematic equation, the distance of penetration,

\displaystyle\longrightarrow\sf{s=\dfrac {v^2-u^2}{2a}}

Penetration stops when the velocity becomes zero, i.e., \displaystyle\sf {v=0.} Thus,

\displaystyle\longrightarrow\sf{s=\dfrac {0^2-u^2}{2\times-5u^2}}

\displaystyle\longrightarrow\sf{s=\dfrac {-u^2}{-10u^2}}

\displaystyle\longrightarrow\sf{\underline {\underline {s=\dfrac {1}{10}\ m}}}

\displaystyle\longrightarrow\sf{\underline {\underline {s=0.1\ m}}}

\displaystyle\longrightarrow\sf {\underline {\underline {s=10\ cm}}}

Similar questions