Physics, asked by Vibhuti10, 1 year ago

A bullet loses 1/n if its velocity while penetrating a distance x into the target. The further distance travelled before coming to rest?

Answers

Answered by nirman95
24

Given:

A bullet loses 1/n if its velocity while penetrating a distance x into the target.

To find:

Distance travelled further before coming to rest.

Calculation:

Let acceleration be a ;

 {v}^{2}  =  {u}^{2}  + 2ax

 =  >  { (\dfrac{u}{n}) }^{2}  =  {u}^{2}  + 2ax

 =  >   \dfrac{ {u}^{2} }{ {n}^{2} }   =  {u}^{2}  + 2ax

 =  >   \dfrac{ {u}^{2} }{ {n}^{2} }    -   {u}^{2}   = 2ax

 =  >   {u}^{2}    \bigg( \dfrac{1}{ {n}^{2}  }  - 1 \bigg)   = 2ax

 =  >    - {u}^{2}    \bigg( \dfrac{ {n}^{2}  - 1}{ {n}^{2}  }   \bigg)   = 2ax

 =  > a =   - \dfrac{  {u}^{2}   }{2x} \bigg( \dfrac{ {n}^{2}  - 1}{ {n}^{2}  }   \bigg)

Now , final Velocity be 0 , and further distance be s ;

 {0}^{2}  =  {v}^{2}  + 2as

 =  > 0 =  \dfrac{ {u}^{2} }{ {n}^{2} }    -   \bigg \{2 \times  \dfrac{  {u}^{2}   }{2x} \bigg( \dfrac{ {n}^{2}  - 1}{ {n}^{2}  }   \bigg)    \times s \bigg \}

 =  >  \dfrac{ {u}^{2} }{ {n}^{2} }   =    \bigg \{2 \times  \dfrac{  {u}^{2}   }{2x} \bigg( \dfrac{ {n}^{2}  - 1}{ {n}^{2}  }   \bigg)    \times s \bigg \}

 =  >  \: s =  \dfrac{x}{ {n}^{2}  - 1}

So, final answer is:

 \boxed{ \bold{ \red{ \huge{ \: s =  \dfrac{x}{ {n}^{2}  - 1} }}}}

Similar questions