Physics, asked by vijaychand8921, 6 months ago

A bullet of 10 grams strikes a sand bag at speed of 10^3 ms-1 and gets embedded after calculating 5 cm

Calculate :

(i) The resistive force exerted by the sand on bullet
(ii) The time taken by the bullet to come to rest

Answers

Answered by Anonymous
76

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}}  \\

\:\:\:\:\bullet\:\:\:\sf{ Mass \: of \: bullet\:(m) = 10 \: g}

\:\:\:\:\bullet\:\:\:\sf{ Speed \: of \: bullet\:(u) = 10^{3}  \: m/s}

\:\:\:\:\bullet\:\:\:\sf{ Travelled \: distance\:(s) = 5 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}}  \\

\:\:\:\:\bullet\:\:\:\sf{ Force \: exerted\:(F)}

\:\:\:\:\bullet\:\:\:\sf{ Time \: taken\:(t) }

\\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\

\dashrightarrow\:\: \sf{  {v}^{2}  =  { u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{ {0}^{2}   =  ({10}^{3} )^{2}  + 2 \times a \times 0.05 }

\\

\dashrightarrow\:\: \sf{   - {10}^{6}  = \frac{a}{10} }

\\

\dashrightarrow\:\: \sf{    - { 10}^{7}  = a }

\\

\dashrightarrow\:\: \sf{ a =  - 10^{7}  \: m/ {s}^{2} }

\\

\dashrightarrow\:\: \sf{Mass =  \frac{10}{1000}  = 0.01 \: kg}

\\

\longrightarrow\:\: \sf{F = ma}

\\

\longrightarrow\:\: \sf{ F= 0.01 \times   - {10}^{7} }

\\

\longrightarrow\:\: \sf{ F=  - 10 ^{5}  \: N}

\\

\therefore \:\sf{Force\: \: exerted \:\: of \:\:bullet \:\: is\: \:  {10}^{5}  \: N \: \:in\: \: backward\: \: direction}

\\

\hookrightarrow\:\: \sf{ v = u + at }

\\

\hookrightarrow\:\: \sf{ 0 = 10^{3}  + ( - 10^{7} ) \times t }

\\

\hookrightarrow\:\: \sf{  - 10 ^{3}  =  - 10^{7}  \times t }

\\

\hookrightarrow\:\: \sf{ t =  \dfrac{ - 10^{3} }{  - {10}^{7} } }

\\

\hookrightarrow\:\: \sf{ t =  \dfrac{1}{10^{4} } \: sec}

\\

 \therefore\:\sf{ The\:\:time \:\: taken \:\: is \:\:  {10}^{ - 4}  \:\: seconds}

Similar questions