Physics, asked by boradipak00, 7 months ago

A bullet of mass 12 g travelling with a velocity of 150 m/s penetrates
deeply into a fixed target and is brought to rest in 0.02 s.
Calculate : (i) depth of penetration in the target
(ii) average retarding force exerted on the bullet.​

Answers

Answered by Anonymous
2

Given :

  • Mass of the bullet (m) = 12 g or 0.012 kg.

  • Intial velocity (u) = 150 m/s.

  • Time of contact (t) = 0.02 s.

To find :

  • Depth of penetration.

  • Average Retarding force.

Solution :

First let us find the Acceleration Produced by the bullet :

We know the First Equation of Motion i.e,

\boxed{\bf{v = u + at}}

Where :

  • v = Final Velocity
  • u = Intial velocity
  • a = Acceleration
  • t = Time Taken

Now using the First Equation of Motion and substituting the values in it, we get :

:\implies \bf{v = u + at} \\ \\ \\

:\implies \bf{0 = 150 + a \times 0.02} \\ \\ \\

:\implies \bf{0 = 150 + \dfrac{2}{100}a} \\ \\ \\

:\implies \bf{-150 = \dfrac{2}{100}a} \\ \\ \\

:\implies \bf{-150 \times 100 = 2a} \\ \\ \\

:\implies \bf{\dfrac{-150 \times 100}{2} = a} \\ \\ \\

:\implies \bf{\dfrac{-15000}{2} = a} \\ \\ \\

:\implies \bf{-7500 = a} \\ \\ \\

\boxed{\therefore \bf{a = -7500\:ms^{-2}}} \\ \\

Hence the acceleration produced by the bullet is - 7500 m/s².

Depth of the Penetration of the target :

We know the second Equation of Motion.i.e,

:\implies \bf{S = ut + \dfrac{1}{2}at^{2} } \\ \\ \\

Where :

  • S = Distance
  • a = Accelaration
  • t = Time Taken
  • u = Initial Velocity

Using the Second equation of motion and substituting the values in it, we get :

:\implies \bf{S = 150 \times 0.02 + \dfrac{1}{2} \times (-7500) \times 0.02^{2}} \\ \\ \\

:\implies \bf{S = 3 + \dfrac{1}{2} \times (-7500) \times 0.0004} \\ \\ \\

:\implies \bf{S = 3 + \dfrac{1}{2} \times (-7500) \times 0.0004} \\ \\ \\

:\implies \bf{S = 3 + \dfrac{1}{2} \times (-7500) \times 0.0004} \\ \\ \\

:\implies \bf{S = 3 + \dfrac{1}{2} \times (-7500) \times 0.0004} \\ \\ \\

:\implies \bf{S = 3 + (-3750) \times 0.0004} \\ \\ \\

:\implies \bf{S = 3 + (-1.5)} \\ \\ \\

:\implies \bf{S = 3 - 1.5} \\ \\ \\

:\implies \bf{S = 1.5} \\ \\ \\

\boxed{\therefore \bf{S = 1.5\:m}} \\ \\ \\

Hence the Depth of Penetration in the target is 1.5 m.

Retarding Force exerted on the bullet :

We know that ,

F = ma

Where :

  • F = Force Exerted
  • m = Mass
  • a = Acceleration.

Using the above equation and substituting the values in it , we get :

F = 0.012 × (-7500)

=> F = -90 N

=> Retarding F = 90 N

Hence the Retarding Force exerted on the bullet is 90 N .

Similar questions