Physics, asked by mayuri1516, 1 year ago

A bullet of mass 20 gm is horizontally fired with a velocity of 150 m/sec from a pistol of mass2 kg. What is the recoil velocity of the piston?

Answers

Answered by Cubingwitsk
18

Everything below which Has 1 as subscript is for Bullet and 2 as subscript is for Gun. ↓


\boxed{\bold{Given\::}}

  • \bold{Mass_{1}\:=\:20\:g\:or\:0.02\:kg.}  (Bullet)
  • \bold{U_{1}\:=0\:m/s} {Given, Bullet is at rest before firing.}
  • \bold{V_{1}\:=150\:m/s} {Given, velocity of bullet}
  • \bold{Mass_{2}\:=2\:kg} {Given, pistol's mass.}
  • \bold{U_{2}\:=0\:m/s} {Given, Gun at rest before firing.}
  • \bold{V_{2}\:=v\:m/s} {Suppose, To find v}

\boxed{\bold{To find\::}}

  • \bold{V_{2}\:=v\:m/s} {Suppose, To find v}

\boxed{\bold{Finding\::}}  


\boxed{\bold{By\:the\:law\:of\:conservation\:of\:momentum}}


\boxed{\bold{We\:have,}}

\bold{\implies\:M_{1}\times\:U_{1}\:+M_{2}\times\:U_{2}\:=\:M_{1}\times\:V_{1}\:+M_{2}\times\:V_{2}}

\boxed{\bold{Putting\:Values,}}

\bold{\implies\:0.02\times\:0\:+2\times\:0\:=\:0.02\times\:150\:+2\times\:V\:\:\:(V_{2}= V)}

\bold{\implies\:0\:=\:\frac{2}{100}\times\:150\:+2\times\:V}

\bold{\implies\:0\:=\:\frac{2}{10\cancel{0}}\times\:15\cancel{0}\:+2\times\:V}

\bold{\implies\:0\:=\:\frac{1}{5}\times\:15\:+2\times\:V}

\bold{\implies\:0\:=\:\frac{1}{1}\times\:3\:+2\times\:V}

\bold{\implies\:0\:=\:3\:+2\times\:V}

\bold{\implies\:-3\:=\:2\times\:V}

\bold{\implies\:\frac{-3}{2}\:=\:V}

\bold{\therefore\implies\:-1.5\:m/s\:=\:V}


\boxed{\bold{-\:sign\:here\:indicates\:that\:gun\:has\:shifted\:from\:left\:to\:right.}}


\boxed{\bold{Thanks!}}

Similar questions