Physics, asked by mavaram1980, 1 month ago

A bullet of mass 200 g is fire from a gun of mass 10kg with a velocity of 100m/s, calculate the velocity of recoil.​

Answers

Answered by Anonymous
15

Answer:

Given :-

  • A bullet of mass 200 g is fire from a gun of mass 10 kg with a velocity of 100 m/s.

To Find :-

  • What is the velocity of recoil.

Formula Used :-

\clubsuit Law Of Conservation Of Momentum Formula :

\mapsto \sf\boxed{\bold{\pink{m_1u_1 + m_2u_2 =\: m_1v_1 + m_2v_2}}}

Solution :-

First, we have to convert mass of bullet (m) g into kg :

\implies \sf Mass_{(Bullet)} =\: 200\: g

\implies \sf Mass_{(Bullet)} =\: \dfrac{2\cancel{00}}{10\cancel{00}}\: kg\: \: \bigg\lgroup \sf\bold{\pink{1\: g =\: \dfrac{1}{1000}\: kg}}\bigg\rgroup

\implies \sf Mass_{(Bullet)} =\: \dfrac{2}{10}\: kg

\implies \sf\bold{\purple{Mass_{(Bullet)} =\: 0.2\: kg}}

Now, we have to find the velocity of recoil :

Given :

  • Mass of bullet (m₁) = 0.2 kg
  • Mass of gun (m₂) = 10 kg
  • Final Velocity of bullet (v₁) = 100 m/s
  • Initial Velocity of bullet (u₁) = 0 m/s
  • Initial Velocity of gun (u₂) = 0 m/s

According to the question by using the formula we get,

\longrightarrow \sf (0.2)(0) + (10)(0) =\: (0.2)(100) + (10)v_2

\longrightarrow \sf 0.2 \times 0 + 10 \times 0 =\: 0.2 \times 100 + 10 \times v_2

\longrightarrow \sf 0 + 0 =\: 20 + 10v_2

\longrightarrow \sf 0 =\: 20 + 10v_2

\longrightarrow \sf 0 - 20 =\: 10v_2

\longrightarrow \sf - 20 =\: 10v_2

\longrightarrow \sf \dfrac{- 2\cancel{0}}{1\cancel{0}} =\: v_2

\longrightarrow \sf \dfrac{- 2}{1} =\: v_2

\longrightarrow \sf - 2 =\: v_2

\longrightarrow \sf\bold{\red{v_2 =\: - 2\: m/s}}

[ Note : - Here, the negetive sign indicates that the velocity of the gun in the opposite direction. ]

{\small{\bold{\underline{\therefore\: The\: velocity\: of\: recoil\: is\: - 2\: m/s\: .}}}}

Answered by Anonymous
10

Given :-

  • Mass of the bullet ( m₁) = 200 g
  • velocity of the bullet (v₁) = 100 m/s
  • Mass of gun (m₂) = 10 kg

To Find :-

  • Recoil velocity of the gun

Formula used :-

  • Conservation of momentum

 \red\longrightarrow \sf \blue{  m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂}

According to law of conservation of momentum, initial momentum is equal to final momentum.

Solution :-

Since, the gun and the bullet were at rest in the starting, therefore initial velocity of both the objects is 0.

Now,

➡\sf \:  0 +0\longrightarrow \: 0.2 \times 100 + 10 \times x \\ ➡ \sf \:  0 = 20 + 10x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ ➡  \sf \: 10x =  - 20 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ ➡ \sf \: x =  \frac{ - 20}{10}  =  - 2m/ {s}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\bf \therefore the \:  recoil \:  velocity \:  of  \: the  \: gun  \: is  - 2m/s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \sf \underline \purple  { Hope \:  it \:  helps  \: you!}

Similar questions