Physics, asked by nitin3231, 2 months ago

A bullet of mass 20g is horizontally fired with a horizontal velocity 150ms‐¹ from a pistol of mass 2kg. What is the recoil velocity of the pistol?​

Answers

Answered by INSIDI0US
144

Explanation:

 \Large\underline{\underline{\sf{\purple{Required\ Answer:-}}}}

For bullet :-

 \sf \: \: \: \: \: \: \: \: \: {m_1\ =\ 20g\ =\ 0.02kg,}

 \sf \: \: \: \: \: \: \: \: \: {u_1\ =\ 0ms^{-1},\ v_1\ =\ +150ms^{-1}}

[By convention, the direction of bullet is taken from left to right (positive)]

For pistol :-

 \sf \: \: \: \: \: \: \: \: \: {m_2\ =\ 2kg,\ u_2\ =\ 0ms^{-1},}

Total momenta of the pistol and bullet before the fire,

 \sf \: \: \: \: \: \: \: \: \: {=\ m_1 u_1\ +\ m_2 u_2}

 \sf \: \: \: \: \: \: \: \: \: {=\ 0.02kg \times 0ms^{-1}\ +\ 2kg \times 0ms^{-1}}

 \sf \: \: \: \: \: \: \: \: \: {=\ 0kgms^{-1}}

Total momenta of the pistol and bullet after the fire,

 \sf \: \: \: \: \: \: \: \: \: {=\ m_1 v_1\ +\ m_2 v_2}

 \sf \: \: \: \: \: \: \: \: \: {=\ 0.02kg \times (+150ms^{-1})\ +\ 2kg\ +\ v_2\ ms^{-1}}

 \sf \: \: \: \: \: \: \: \: \: {=\ (3\ +\ 2v_2)kgms^{-1}}

According to the law of conservation of momentum

 \sf \odot\ {Total\ momenta\ after\ the\ fire\ =\ Total\ momenta\ before\ the\ fire}

 \sf \: \: \: \: \: \: \: \: \: {=\ 3\ +\ 2v_2\ =\ 0}

 \sf \: \: \: \: \: \: \: \: \: {=\ 2v_2\ =\ -3}

 \sf \: \: \: \: \: \: \: \: \: {\red{=\ v_2\ =\ -1.5ms^{-1}}}

Negative sign indicates that the direction in which the pistol would recoil in opposite to that of bullet (right to left).

___________________

More to know :-

Conservation of momentum

According to the second law of motion,

 \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {F\ =\ \dfrac{dP}{dt}}

If external applied force F in zero (F = 0),

 \sf {Then,}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {F\ =\ \dfrac{dP}{dt}\ =\ 0}

 \sf {i.e.,}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {P\ =\ Constant}

In the absence of ext. applied force net linear momentum of a system is always constant.

Answered by samarthcv
6

Answer:

Initial momentum of the system is 0 as it is at rest.

After firing-

MV = mv

⟹V = mv/M = 0.02 × 150/2

⟹V = 1.5m/s

Similar questions