Physics, asked by abhijithr2790, 11 months ago

A bulletin of mass 0.05kg is fired from a rifle with a velocity of 800m/s After passing wall of thickness 1m it's velocity reduces to 200m/s find the resistive force of the wall

Answers

Answered by lAravindReddyl
9

Answer:-

F = -15000N

Explanation:-

Given:-

  • m = 0.05kg
  • u = 800 m/s
  • v = 200 m/s
  • s = 1m

To Find:-

Resistive Force of the wall on bullet

Solution:-

\boxed{\bold{{v}^{2}-{u}^{2}=  2as}}

{\rightarrow} \: {200}^{2}-{800}^{2}=  2a (1)

{\rightarrow} \: 40000- 640000=  2a

{\rightarrow} \: 40000- 640000=  2a

{\rightarrow} \: -600000=  2a

{\rightarrow} \bold{\: a = -300000 m{s}^{-2}}

F = ma

{\rightarrow} \: F =  0.05 \times -300000

{\rightarrow}\bold{ \: F =  -15000N}

Answered by ShivamKashyap08
11

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

Initial velocity (u) = 800 m/s.

Final velocity (v) = 200 m/s.

Thickness (S) = 1 m.

Mass of the body (M) = 0.05 Kg.

\huge{\bold{\underline{Explanation:-}}}

Applying third kinematic equation.

\large{\bold{v^2 - u^2 = 2as}}

Substituting the values,

\large{(200)^2 - (800)^2 = 2 \times 1 \times a}

\large{40000 - 640000 = 2 \times a}

\large{a = \frac{40000 - 640000}{2}}

\large{a =  \frac{ - 600000}{2}}

\large{a = \frac{ \cancel{ - 600000}}{ \cancel{2}}}

\large{a = - 300000}

\large{\bold{\boxed{a = - 30 \times 10^4 \: m/s^2}}}

Applying Newton's second law

\large{\bold{F = ma}}

Substituting the values,

\large{F = 0.05 \times - 30 \times 10^4}

\large{F = 5 \times 10^{-2} \times - 30 \times 10^4}

\large{F = 5 \times - 30 \times 10^{(4 - 2)}}

\large{F = - 150 \times 10^2}

\large{F = - 15 \times 10^3}

\huge{\boxed{\boxed{F = - 15 \: KN}}}

So, resistive force has a value of - 15 Kilo Newton's.

The negative sign indicates that force is acting in the opposite direction of the motion of the body.

Similar questions