a bullt of 0.05 kg strikes a wooden target 0.2 m thick with a velocity of 300 m/s and emerges out with a velocity of 100m/s. calculate the:- (1) loss in kinetic energy and (2) average force of friction of wood
Answers
Given :
- Mass of the bullet = 0.05 kg
- Thickness of the wood (d) = 0.2 m
- Initial velocity (u) = 300 m/s
- Final velocity (v) = 100 m/s
To find :
- Loss in KE
- Average force of friction acting on the wood .
Solution :
(1) Kinetic energy is the energy possesed by the body due to it's motion .
⇒ KE = ½ mv²
Initial kinetic energy
⇒ KE = ½ m u²
Now let's substitute the given values in the above equation ,
⇒ KE = ½ x 0.05 x 90,000
⇒ KE = 4,500 J
Final kinetic energy
⇒ KE' = ½ m v²
Now let's substitute the given values in the above equation ,
⇒ KE' = ½ x 0.05 x 10000
⇒ KE = 500 J
Loss in kinetic energy
⇒ ΔKE = 4,500 - 500
⇒ ΔKE = 4000 J
The increase in kinetic energy is 4000 J .
(2)
⇒ Work done = ΔKE
We know that
⇒ Work done = F. d
Hence ,
⇒ ΔKE = F. d
⇒ F = 4000 / 0.2
⇒ F = 20,000 N
The average force of friction acting on the wood is 20,000 N
(i) loss in K.E = 2000 J
(ii) avg. force of friction = 10, 000 N
Explanation:
Given,
mass of of bullet = 0.05 kg
thickness of wooden target = 0.2 m
initial velocity (u) = 300 ms‐¹
final velocity (v) = 100 ms‐¹
Initial K.E = 1/2mu²
= 1/2×0.05×300×300
= 2250 J
Final K.E = 1/2mv²
= 1/2×0.05×100×100
= 250 J
(i) Loss in K.E = Initial K.E - Final K.E
= 2250 J - 250 J
= 2000 J
(ii) Work done by the bullet = average force of friction of wood × distance traveled by the bullet
W = F × S
2000 = F × 0.2
F = 2000 ÷ 0.2
F = 10, 000 N
Hence, average force of friction of wood = 10, 000 N.