Math, asked by mohammedrayanrst, 1 year ago

A bus accelerate uniformly from 54km/h to 74km/h in 10s. Calculate 1.acceleration
2.distance travelled​

Answers

Answered by VishalSharma01
179

Answer:

Step-by-step explanation:

Given :-

Initial velocity, u = 72 km/h = 72 (5/18) m/s = 20 m/s  

Final velocity, v = 54 km/h = 54 (5/18) m/s = 15 m/s  

Time in which velocity changes is, t = 10 seconds  

To Find :-

(a) Acceleration

(b) Distance traveled

Formula to be used :-

a = (v - u)/t  and v² = u² + 2aS  

Solution :-

(a) Acceleration

Acceleration, a = (v - u)/t  

⇒ a = (20-15)/10

= 0.5 m/s²

(b) Distance traveled by the bus  

v² = u² + 2aS  

⇒ 20² = 15² + 2 × 0.5 × S  

⇒ 400 = 225 + 1×S

⇒ 400 - 225 = S

⇒ S = 175 m

Hence, the acceleration and distance traveled​ by bus is 0.5 m/s² and 175 m.

Answered by Anonymous
4

 \large \bold{ \underline{ \underline{ \sf \:  Answer   : \:  \:  \: }}}

 \star Acceleration = 0.5 m/s²

 \star Distance = 175 m

 \large \bold{ \underline{ \underline{ \sf \:  Explaination : \:  \:  \: }}}

(i) Acceleration

 \large \bold{ \fbox{ \fbox{ \sf Acceleration =  \frac{(v - u)}{t} }}}

  \sf  \to a = \frac{ (20-15)}{10} </p><p> \\  \\ </p><p> \sf  \to a =  0.5  \:  \: m/{s}^{2}

(ii) Distance traveled by the bus

 \large \fbox{ \fbox{ \bold{ \sf {v}^{2}  =  {u}^{2}  + 2aS  }}}

 \to \sf {(20)}^{2} =  {(15)}^{2} + 2 × 0.5 × S   \\  \\  \sf</p><p>  \to</p><p>400 = 225 + 1×S \\  \\  \sf </p><p>  \to</p><p>400 - 225 = S \\  \\  \sf</p><p> \to</p><p>S = 175 \:  m

 \therefore The acceleration and distance traveled by bus is 0.5 m/s² and 175 m

Similar questions